
Hybrid P4 Programmable Pipelines for 5G gNodeB and User Plane Functions

Suneet Kumar Singh∗, Christian Esteve Rothenberg∗, Jonatan Langlet†, Andreas Kassler‡

Péter Vörös§, Sándor Laki§ and Gergely Pongrácz¶
University of Campinas, Brazil∗, Queen Mary University of London, UK†, Karlstad University, Sweden‡

ELTE Eötvös Loránd University, Hungary§, Ericsson Research, Hungary¶

Email: ∗ssingh@dca.fee.unicamp.br, ∗chesteve@dca.fee.unicamp.br, †j.langlet@qmul.ac.uk
‡andreas.kassler@kau.se, §vopraai@inf.elte.hu, §lakis@inf.elte.hu, ¶gergely.pongracz@ericsson.com

Abstract—This paper focuses on hybrid pipeline designs for
User Plane Function and next-generation NodeB leveraging
target-specific features and an insightful discussion of P4 and
target challenges and limitations. The entire or disaggregated
UPF runs on P4 targets and allocates packet processing data
paths in P4 hardware or DPDK/x86 software based on flow
characteristics (e.g., heavy hitters) and QoS requirements
(e.g., low-latency slices). For the hybrid gNodeB, most packet
processing is executed in commodity Tofino hardware, while
unsupported functions such as Automatic Repeat Request and
cryptography are performed in DPDK/x86. We show that our
hybrid UPF improves the scalability by 18× and reduces
latency up to 50%. The results also suggest that careful
traffic allocation to pipeline targets is required to optimize
each target's strength and avoid processing delays. Finally, we
demonstrate a QoS-oriented application of the hybrid UPF and
present gNodeB buffer service benchmarks.

Index Terms—5G, mobile network, P4, programmable net-
works, hybrid network

1. Introduction

Next-generation mobile networks, including future ver-
sions of the currently deployed 5G networks, aim to support
a diverse set of traffic mixes stemming from demanding ap-
plications such as Extended reality (XR), Industrial Internet
of things (I-IoT), and self-driving vehicles [12]. To support
the ever-increasing data rates while at the same achiev-
ing low and predictable latency for critical services (e.g.,
URLLC), the user plane of the mobile core network is a
critical component because it deals with the packet forward-
ing between the user terminal (UE) and the packet gateway,
which connects the operator network to the Internet. Conse-
quently, the user plane faces complex requirements to ensure
that diverse services can be delivered under tight latency
bounds at scale.

Delivering new functionalities in a timely and cus-
tomized manner demands a flexible user plane, which has
led to the current softwarized packet core network design,
where most packet processing is done on commodity servers
in software [20]. However, such flexibility comes with sev-
eral drawbacks. Firstly, softwarized packet processing has

Ab
st

ra
ct

io
n

/ P
ro

gr
am

m
ab

ilit
y

Pe
rfo

rm
an

ce

General Purpose Hardware (CPU)

Field-programmable Gate Arrays
(FPGA)

Application-specific Integrated
Circuits (ASIC)

SW-HW Design Targets

HW-HW Design Targets

Figure 1: Performance and programmability trade-offs.

difficulties maintaining low and predictable latencies due to
several bottlenecks that are intrinsic to the hardware design
of modern servers, such as limited and varying PCIe bus
transfer speeds, cache misses, and other phenomena [25],
which makes it difficult to maintain stable packet process-
ing latencies at high load. Secondly, softwarized packet
processing on commodity servers typically relies on kernel
bypass to process packets at user space using frameworks
such as the DPDK [11], which fully utilizes CPU cores
for constantly polling the NIC for packets, as shown in
Figure 2(a). While reducing the latency, such polling wastes
CPU cycles and leads to high energy consumption, signifi-
cantly increasing operational costs. The main abbreviations
used in this paper are listed in Table 1.

Recent efforts in the P4 [8] community provide support
for a diverse range of various targets [37], i.e., ASICs,
FPGAs, and x86, while providing flexibility to offload
network functions to leverage the performance capabil-
ities of different targets. Figure 1 shows the trade-off
between programmability and performance. For example,
x86-based packet processing provides the highest degree
of programmability and flexibility at the expense of low
throughput, high and unpredictable latency, and increased
operational costs in CPU cores and energy consumption.
On the other end, ASICs provide predictable latency at a
line rate with a limited degree of programmability. On the
other hand, FPGA offers more programmability than ASIC
with good performance characteristics at increased footprint

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

UDM

DB

Core NFDB

Edge NF

UPF

x86

Smart NIC

Tofino Switch

A2.p4

A3.p4

A1.p4 A5.p4

A4.p4

SW-HW Hybrid UPF

B.p4 A.p4

RAN

CP

'fast' Control Plane

Static configuration

'slow' Control Plane Core User Plane

Core User Plane

Core User PlaneEdge User Plane

Edge User Plane

Legend

x86

Smart NIC

Tofino Switch

B3.p4 B4.p4

SW-HW Hybrid UPF

B1.p4 B5.p4

B2.p4

UPF
Edge User Plane

ToR Switch

vSwitch

Kernel-Space

VM VM

Option 2

Guest

Host OS

Server

Physical Network

VNF VNF

VNF VNF

VNF VNF

vNIC vNIC

PMD Driver

DPDK

Standard NIC
DPDK

P4-SmartNIC

1VNF

Option 3

Option 1

Option 5

Option 4

User-Space

(a) VNF offloading options to accelerate the path or based on
complexity or unsupported functions by P4

(b) 5G mobile network to show the disaggregation of a single
P4 and run on different targets

Figure 2: (a) VNF offloading options and (b) disaggregation of a P4 code for UPF and gNodeB 5G data plane functions.

and power consumption.
To leverage emerging P4 programmable devices dis-

cussed above, most state-of-the-art [39] [36] compiles the
user plane to P4 specific targets such as programmable
ASIC, SmartNIC, or x86, but this approach limits the perfor-
mance and functionality of the P4 program [10] [17]. For
example, the P4 programmability and available resources
such as stateful memory or match action table entries of a
switching ASIC such as Tofino are limited. On the other
hand, compiling a P4 program to a SmartNIC may lever-
age its micro-C-based programmability to implement more
complex external functions. While the SmartNIC may have
abundant resources, the performance may also be impacted,
e.g., large table lookups. Finally, cryptographic operations,
packet buffering, and retransmissions, which are required to
implement the lower layer packet processing within a 5G
data plane, may require the P4 program to be compiled to
the x86 due to the needed flexibility for external function
processing. To leverage the target specific features, some
recent efforts [4] [22] split the UPF and offload unsupported
functions, such as buffer services or hierarchical Quality
of Service (QoS) from Tofino switch to x86 or SmartNIC.
However, their solutions are either unable to answer how
traffic allocation between targets impacts the overall perfor-
mance or only focus on the specific target’s performance.

In this paper, we propose hybrid design approaches, that
P4 packet processing pipelines be split up into their basic
processing units [41], individually compiled, and run on
different, possibly heterogeneous, targets to enhance overall
performance. The proposed data plane disaggregation ap-
proaches to split the functionality by carefully considering
the mobile packet core packet processing requirements to
combine each target’s strength. Figure 2 shows the possible
offloading options and illustrates the general view of a 5G
mobile network architecture. The packet processing pipeline
(Figure 2(b)) is disaggregated into small sub-programs and
flexibly deployed from the edge to the core of the net-
work across different targets. For example, assume that
the program A.p4 can be split into five sub-programs.

TABLE 1: This table describes the various abbreviations
used throughout this paper.

Abbreviations Definition
URLLC Ultra-Reliable Low-Latency Communication
DPDK Data Plane Development Kit
ASIC Application Specific Integrated Circuit
FPGA Field Programmable Gate Array

SmartNIC Smart Network Interface Card
NetFPGA Network Smart Network Interface Card

UPF User Plane Function
P4 Programming Protocol-independent Packet Processors

NPL Network Programming Language
RAN Radio Access Network
GTP General Packet Radio Service Tunneling Protocol

eBPF/XDP Extended Berkeley Packet Filter/Express Data Path
SDNet Software Defined Specification Environment for Networking
VHDL VHSIC Hardware Description Language
BST Base Station Transceiver

RLC-AM Radio link control - Acknowledged Mode
RTT Round Trip Time

QUIC Quick UDP Internet Protocol
PDCP Packet Data Convergence Protocol
ACL Access Control List

BMv2 Behavioral Model version 2

A2.p4 and A4.p4 could be run on the x86 to utilize the
high degree of programmability, functionality, and available
resources while observing the target latency and throughput.
The sub-program A3.p4 could be run on SmartNIC to
exploit the more predictable latency while releasing CPU
cycles. Finally, 5G user plane functionality implemented in
A1.p4 and A5.p4 that require limited programmability
and resources could be run on Tofino switch ASICs. The
same approach can be applied for edge network user plane
functions. For example, the B.p4 is split based on similar
logic to A4.p4. Also shown in Figure 2(b) but not relevant
to the scope of this work are the Unified Data Management
(UDM) static configuration functions interfaced by ‘slow’
5G control plane functions to access user data network
profiles and handle access authorization and registration.
The ‘fast’ control plane functions refer to low-level radio-
related radio resource management per-user basis or control
spectrum on a system level.

Our hybrid design models support diverse targets, ASIC,
SmatNIC, and x86, focusing on 5G UPF and gNodeB, but

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

applicable to other datapath pipelines. We perform an ex-
tensive experimental evaluation to assess each design model.
To the best of our knowledge, this is the first work to design,
implement and experimentally evaluate different hybrid de-
sign models for 5G user plane packet processing functions
embracing diverse P4 targets. We discuss the background
and related work (Section 2) and 5G system implementation
challenges and limitations using P4 (Section 3). We present
different hybrid design models using three offloading axes
and related use-cases (Section 4). Finally, we carry out an
extensive evaluation for each design model (Section 5). We
show that the proposed hybrid approaches are more scalable
and programmable to make the user plane more flexible
without compromising performance.

In summary, the main contribution of this paper is to
realize the 5G components such as UPF and gNodeB as
hybrid HW/SW systems by discussing the limitations and
implementation challenges of the P4 language and target-
specific nuances. We develop 5G unsupported user plane
functions for buffering, encryption/decryption, and time-
based re-transmission for P4-based x86/DPDK targets. In
addition, we showcase a QoS-oriented application of the
hybrid-UPF and discuss gNodeB buffer service benchmarks.

2. Background

2.1. 5G Network Architecture

The 5G network [12] is highly flexible than the previ-
ous generations because of the recent growth and imple-
mentation of softwarization and network virtualization of
network services. The service-based architecture makes the
5G network more flexible and programmable. There are two
significant benefits of service-based architecture, 1) each
service can be updated without affecting the other services,
and 2) easy to extend the new functionality. Figure 2 shows a
high-level overview of the 5G mobile network architecture,
consisting of RAN and Core network function. gNodeB
in RAN contains a Centralized Unit (CU) and Distributed
Units (DUs). The CU is further divided into control and user
plane components. The user plane consists of Service Data
Adaptation (SDAP) layers are responsible for user plane data
transfer between UE and gNodeB.

UPF is connected with gNodeB, and data packets are ex-
changed using GTP. When a UE connects with the internet,
an end-to-end tunnel between UE and UPF forms a PDU
(Protocol Data Unit) session. UPF provides the connectivity
between the mobile infrastructure and the Data Network to
encapsulate and decapsulate packets using GPRS Tunneling
Protocol. Also, UPF is responsible for handling QoS per-
flow, including transport level packet marking for uplink and
downlink, rate limiting, guaranteed bit rate, maximum bit
rate, service data flow (SDF) mapping, and packet routing
and forwarding. The detail about the functions of gNodeB
and UPF is given in Sections 5.1 & 5.2.

Typically, UPF and gNodeB user plane functionalities
are implemented as a cloud/edge application running on

virtual machines or Docker containers [16] [26]. We can
improve the overall performance by defining user-plane
functions in the P4 language and instructing the networking
hardware to process the packets. However, the complete
user plane functionalities are challenging to run on the
switch ASIC because of limited resources and functionalities
(detailed in Section 4). For a more flexible solution, a
hybrid design approach can be adopted, which distributes
the overall packet processing on different hardware targets.
Several P4-based user plane functions and hybrid design
implementations have been proposed, and discussed in sub-
sections 3.1 and 3.2.

2.2. Programmable Data Planes

Data plane programmability has opened the door for new
applications [14] that require fast packet processing. Differ-
ent solutions have emerged to support the programmability
of hardware devices, including eBPF/XDP [43], DPDK’s
flow API [11], or domain-specific languages like P4 [8] or
NPL [3]. Though the goals of these approaches are similar,
they provide different abstraction levels. eBPF /XDP and
DPDK are low-level C/C++ libraries supported mainly by
smart and standard NICs, requiring deep domain-specific
knowledge and programming skills. In addition, the data
plane programming languages like P4 and NPL created for
describing packet processing pipelines have a high abstrac-
tion levels and do not require deep programming skills,
allowing network developers to solely focus on the problem
to be solved. While NPL is designed to program switches,
P4 intends to be more generic, supporting a variety of
different targets through its architecture models in a common
framework (e.g., same language, control plane, etc.). This
makes P4 a good choice for designing and implementing
hybrid solutions that integrate heterogeneous devices into a
common platform.

The P4 language [8] is used to describe the pipeline
behavior of the data plane of a forwarding element such
as hardware or software switch and network interface card.
The main purpose of designing this language are, 1) Target
Independence: P4 programs can be compiled on different
targets such as CPUs, FPGAs, system(s)-on-chip, network
processors, and ASICs, 2) Protocol Independence: P4 allows
to describe the header formats, and field names of the require
protocols. 3) Reconfigurability: the P4 targets can change
the forwarding pipeline anytime after they are deployed.
Including these features, P4 also generates the control plane
API for a given switch target. There are two versions of P4,
P414, and P416. This article focuses on P416, which is much
simpler, featured, structured, and flexible to run on different
targets than P414.

3. Related Work

3.1. Programmable Hardware Acceleration

Offloading network functions running on general-
purpose Commercial-Off-The-Shelf (COTS) servers (e.g.,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 2: The existing state-of-the-art on P4-based mobile network user functions and the proposed work. H-Split and
V-Split indicate Horizontal and Vertical split the packet processing pipeline, detailed in Section 5.3.

Design Core idea Deployment 4/5G User Plane Implementation
H-Split V-Split CPU SmartNIC ASIC

vEPG [39] Offload MPC UPF to P4 ASIC Core NF 4G ❍ ❍ ✓ ❍ ✓

TurboEPC [36] Analyze signaling in the data-plane Core NF 4G ❍ ❍ ✓ ✓ ❍

5G-UPF [4] Perform UPF in HW/SW and buffering service in SW Core NF 5G ❍ ⊙ ✓ ✓ ❍

Model & Performant UPF [22] Simplify interface with CP, achieve high performance Core NF 5G ❍ ⊙ ✓ ❍ ✓

5G-Edge-to-Core [33] 5G Multi-tenant P4 based data-path Backhaul 5G N/A N/A ❍ ✓ ❍

BNG [19] Analyze BNG in P4 HW BNG 5G ❍ ✓ ❍ ✓ ✓

Hybrid-UPF (Proposed) Perform UPF combining different P4 target-specific features Core NF 5G ✓ ✓ ✓ ✓ ✓

Hybrid-gNodeB (Proposed) Define gNodeB in P4 and unsupported functions in DPDK Edge NF 5G ❍ ✓ ✓ ✓ ✓

❍ Not covered ⊙ Covered but not evaluated ✓ Covered and evaluated

x86) [31] to the hardware switch can provide two significant
benefits. First, network functions can perform with ultra-low
latency and high throughput. Second, energy consumption
can be reduced due to big data analytic applications or other
data center computations [24]. As mentioned in the previous
section, there are various network P4 programmable hard-
ware accelerator platforms; this paper mainly focuses on
x86, SmartNICs, and ASICs.

The P4→NetFPGA [13] provides an environment and
workflow to use FPGAs as a switch to run P4 programs
using the Xilinx P4-SDNet toolchain. The Alveo SN1000 [5]
SmartNIC is a recent example of hybrid designs for Smart
NIC-DPU based on the integration of FPGAs and CPU that
allow full protocol-level offload acceleration customization
and application-specific data paths and provide flexibility to
program using P4 high-level language programming.

In [33], 5G backhaul is implemented on the NetFPGA
P4 pipeline in two stages: Parsing and Match/Action. The
proposed design supports the double encapsulation required
to communicate between 5G edge and core network within
the multi-tenant 5G networks. The evaluation results have
shown a lower packet loss from 49% to 4% in the worst-case
to provide QoS in network congestion. Similarly, in [32]
[46], a 5G-based QoS-aware network slicing solution is
performed on P4-NetFPGA to fulfill the SLA requirement
in terms of end-to-end latency and bandwidth. Not only
offloading the user plane functions but [36] redesigns mobile
packet core and offloads a significant fraction of signal-
ing procedures from the control plane to P4-programmable
hardware (Netronome Agilio SmartNIC) or software switch
(BMv2).

The performance of NetFPGA/SmartNIC lies in between
a commodity x86 server and switch ASIC. However, some
network applications require very high performance, e.g.,
very high throughput and ultra-low latency, which are dif-
ficult to achieve using NetFPGA or any SmartNIC. As
a solution, many works have been proposed where net-
work functions are offloaded to switch ASIC. For example,
in [39], the virtual Evolved Packet Gateway (vEPG) in the
4G access network is designed and evaluated on Tofino
switch ASIC. The evaluation results show a low end-to-
end latency of less than two µsec. Also, in [18], 5G UPF
is performed under four different approaches as a device

under tests, such as a kernel and userspace implementation
on servers with dedicated NIC or virtual R-IOV ports and
P4-based UPF implementation on Tofino switch. The results
confirm that the P4 switch performs far better than other
approaches. Apart from the UPF implementation, complex
algorithms such as enhanced content permutation algorithm
[21] can be executed on the Tofino switch to encode/decode
up to 6.4 Tb/sec to protect the 5G packets.

3.2. P4 Hybrid Datapaths

In the above discussion, we focus mainly on the existing
works which offload network functions either on the switch
ASIC or P4NetFPGA. However, network applications can
be disaggregated and run on different platforms based on
the application requirements to utilize the benefits from
different targets [15]. Recently, a disaggregated UPF [35]
[29] has been proposed commercially. Specifically, the P4
program is optimized and split into multiple components.
Then, each component runs on different targets based on
the complexity of function and application requirements.
For example, running the same P4 based 5G UPF on an
FPGA can scale the number of sessions from hundreds of
thousands to millions compared to switch ASIC.

Similarly, in the ongoing Aether project [27] [22], which
provides mobile connectivity and edge cloud services for
distributed enterprise networks at Open Networking Foun-
dation (ONF), two P4-based UPF designs are presented: (1)
model-UPF and (2) performant-UPF. The Performant-UPF
has been implemented on the Tofino switch ASIC. Also,
supporting other functionalities such as packet buffering or
hierarchical QoS to provide isolation for each UE, which
are limited by the current versions of Tofino switches, are
executed on P4-based SmartNIC or x86. The model-UPF is
developed as an open-source model data-plane, written for
the Behavioral Model version 2 (BMv2) software switch
to simplify the interface with the control plane. In [22],
the design and use-cases of Aether are discussed in detail;
however, the performance is not evaluated. Also, it is unclear
what scenario is to be adopted to distribute the traffic if
UPF runs on different programmable targets. On the other
hand, Aether proposes using different queues to prioritize
the traffic flows but does not provide guarantees per traffic
class.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

https://github.com/intrig-unicamp/macsad-usecases/blob/master/p4-16/vEPG/vEPG.p4
https://github.com/rinku-shah/turboepc
https://www.cse.iitb.ac.in/~mythili/research/papers/2021-upf.pdf
https://www.cs.princeton.edu/~macdavid/media/up4-sosr21.pdf
https://dl.acm.org/doi/10.1145/2934872.2934906
https://github.com/BlockLiu/ElasticSketchCode/tree/master/src/CPU/ElasticSketch

Parser Deparser

Memory ALU

Registers

Limited depth Limited bits

Match-Action
Table

Limited rules and size

Limited accesses and operations

Limited ALU operations

Fixed number of stages

Figure 3: Resource limitations in P4 Switch ASIC.

As mentioned above, the HW switches can support QoS
up to some extent with limited queues. However, handling
the rate limit for QoS might be difficult because of the un-
supported packet buffering features in HW switches. In [4],
the UPF is performed on Agilio CX 2x10GbE SmartNICs.
The packets which are required to be handled by buffer
service are sent to the software. However, this work fails
to show the overall impact of processing packets through
different paths compared to SW or HW-based implementa-
tion. Finally, instead of UPF offloading, in [19], an open-
source implementation of a broadband network gateway
(BNG) is executed on NetFPGA and also performed on the
Tofino switch ASIC. The packet queuing and scheduling are
performed on NetFPGA.

Our work on hybrid designs for 5G UPF and gNodeB im-
plementation differs from the existing works as follows (see
Table 2 for a compact representation). Compared to related
work on P4-based UPF, our Hybrid-UPF effectively uti-
lizes the target-specific features based on vertical/horizontal
split of packet processing pipeline and runs the entire or
disaggregated UPF on different P4 targets to make UPF
more flexible and programmable at high performance and
scale. Furthermore, our gNodeB is the first work, where
most packet processing is defined in P4 and other func-
tionalities such as encryption/decryption, buffering, and re-
transmission services are implemented in DPDK. While our
preliminary assessments of gNodeB were presented in [44],
this article discusses in detail P4 language-specific limita-
tions for gNodeB implementations and presents the P4 based
hybrid gNodeB workflow, and the 5G buffer as a service
with detailed algorithm and benchmark evaluation.

4. P4 for 5G User Planes: Rationale, Chal-
lenges and Limitations

As shown in Figure 2, 5G user plane functions can be
defined in P4 and offloaded to the HW switches to satisfy the
required 5G SLA. Using P4, we can leverage many benefits
such as In-band Network Telemetry (INT) for traffic mea-
surement, support of network slicing, cybersecurity using
deep packet inspection capabilities of P4, and online DDoS
(Distributed Denial-of-Service) attack mitigation, etc. Apart
from these benefits, one of the significant advantages of
using P4 is that it is easier for mobile operators to modify
their pipeline (e.g., dynamically modify match conditions

and forwarding actions as per the stateful parameters like
meters or registers) on runtime.

The recent development of the P4-based programmable
data plane opens an exciting opportunity to offload network
functions and algorithms to various programmable targets.
Each programmable target has its features and limitations
to perform the different tasks and operations. Due to these
limitations, some complex tasks need to be offloaded with
performance expenses, as shown in Figure 1. In this section,
we highlight the general P4 target-specific challenges focus-
ing on the 5G network. Also, we discuss the P4 limitations
to support 5G user planes based on the programmable targets
and their available resources, including some functional
limitations.

4.1. P4 Implementation Challenges

Programmable Switch ASIC. Figure 3 illustrates the re-
source limitations of a programmable switch ASIC. A
limited number of ingress parsers per pipeline push their
PHV (Packet Header Vector) into the ingress match-action
pipeline. Suppose packet headers for parsing are longer than
the ingress parser limit. In that case, the packet must be
recirculated, and then the parser has to parse the remain-
ing packet headers during the second phase. This directly
impacts the performance of the switch. The precious PHV
resources, a limited collection of bits, are allocated to match-
action ingress and egress pipes based on the P4 program.

Each stage can have a fixed number of SRAM and
TCAM tables, and each table can use a fixed number of
bits for a single match. Although a table can span multiple
stages, the number of stages also poses a limitation. So due
to the limited SRAM and TCAM per stage and the limited
number of stages, the size of big tables - such as the UE
lookup table - is limited. We hit the maximum table size to
perform UE matches (Table 5) during the 5G UPF execution
on Tofino HW. To improve scalability, we propose a hybrid
approach (Section 5.4).

Furthermore, arithmetic operations such as multiplica-
tions and divisions or comparison two variables operations
are generally not supported or limited by traditional switch
ASIC. The emerging P4 programmable HW (e.g., P4 Tofino)
supports simple bit operations. For complex computations,
sometimes, we have to rely on the average calculations.
This paper uses the Heavy-Hitter detection algorithm (Sec-
tion 5.4) based on Inter-Packet Gap (IPG) [38], where
the exponential weighted moving average (EWMA) is per-
formed. Since EMWA is difficult to compute accurately in
Tofino switch HW, we depend on the average EWMA cal-
culation. To execute such HH algorithms in programmable
HW, we use registers to keep flow states, e.g., 5-tuple flow
Id, counters. In such cases, we mostly hit the limitation to
access the register memory. For example, when a packet
enters the switch, it can access only a few addresses in
the register memory because of per-stage timing demand.
Also, the incoming packet accesses a register instance only
once in its lifetime. Such limitations can force to re-circulate

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

the packet for re-accessing memory based on algorithm
requirement.

In addition, to guarantee low and bounded per-packet
latency, P4 programmable HW contains a fixed number of
stages. To fit the given P4 program within the available
stages, we require to avoid unnecessary table dependencies.
We face this issue in executing the 5G UPF functionalities
in parallel with the HH algorithm. Since the decision of
packet routing is based on the output of the HH algorithm
(Figure 5), it is hard to fit the hybrid design pipeline within
the fixed number of stages (i.e., 12 Stages in Tofino). We
optimize the code to efficiently use the table dependencies to
fit the proposed design in the available stages. However, the
upcoming P4 programmable switch ASIC [29] might have
extra features, including the number of stages to overcome
these issues. A detailed discussion about the hybrid design
is given in Section 5.4.

Programmable SmartNIC. VNF packet processing can be
accelerated using programmable components, and bringing
it closer to endpoints inside the data center and at the edge
is essential for reduced latency and improved scalability.
However, this requires that those components support the
required functionality (e.g., P4 programmability). For exam-
ple, the function can be deployed on the NICs installed in
the edge compute nodes leveraging the P4 programmability
features of modern smartNICs. There are two classes of
smartNICs that operate using flow processor cores that act
more as small CPUs and are optimized for packet processing
(e.g., Netronome Agilo CX, Pensando DSC, and Mellanox
BlueField) or FPGA-based solutions (e.g., Xilinx Alveo or
Intel PAC 3000).

Flow processor cores-based approaches are typically
more flexible, where their generic architecture allows for
highly complex and customizable processing logic not al-
lowed in ASICs. For example, the Netronome platform
comes with additional Micro-C language support that will
enable implementations using custom user-defined external
functions, expanding the P4 language with support, e.g.,
crypto acceleration, and various algorithms residing outside
the directed acyclical graph (DAG) domain of P4. However,
leveraging these techniques above might result in less deter-
ministic packet processing performance, which in the worst
cases lead to latency spikes, and potential packet loss. In
addition, different operations (such as ternary matches) may
need to be emulated in software as such NICs typically do
not come with TCAM support. Consequently, complex and
large table lookups may severely impact the performance
of such flow processor core-based architectures, especially
as those cores run typically at a lower frequency (e.g., 800
MHz) compared to host-based packet processing. Therefore,
complex packet pipelines may lead to higher latency when
deployed on smartNIC.

On the other hand, FPGA-based approaches provide
more predictable performance but have less support for
implementing complex packet processing logic. In addition,
such hardware targets have a typically limited amount of
resources (e.g., TCAM entries) and generally are more re-

stricted in terms of external function support. Finally, smart-
NICs with programmable flow processor cores are easier to
program as the P4 extern constructs are less restrictive (e.g.,
calculating modulus operation in micro-C in smartNIC is
possible). At the same time, FPGA-based platforms require
dedicated frameworks such as SDNet or Netcope to offer
extended P4 programmability with the need to program such
extensions using VHDL.

4.2. P4 Language Limitations for 5G support

Some 5G UPF and gNodeB functionalities are not pos-
sible to implement with the currently available features of
the P4 language. We discuss some of them as follows:
Buffering and Timers. The re-transmission loop called
RLC is between the gNodeB and the UEs. The goal of
RLC in acknowledged mode (AM) is to confirm that packets
transferred by the BST arrive at the corresponding UEs. This
requires packet buffering and timers.

Packet buffering requires a relatively large amount of
memory to sustain buffers long enough to hold an RTT-
long stream of downlink packets. For example, a UE with
good coverage can reach 1 Gbps and 20 msec RTT over
the air. If the UE requires RLC-AM, the BST will allocate
approximately 3 MB of buffer space for the in-flight packets.
Furthermore, we have to multiply this amount by the number
of (active) UEs.

Because fast memory is scarce in hardware switches,
the P4 language lacks buffering and timer-based operations
support. Because of that, we had to rely on a hybrid solution,
where part of the pipeline (buffer-as-as-service, BaaS) runs
external (e.g., x86/DPDK) to the P4 domain. In BaaS, a
packet is received, and if the signal is del (i.e., delete), both
packet and timer are deleted. On the other hand, the packet
is re-sent and resets the timer if the timer reaches zero. The
buffering and re-transmission timers are not specific to the
RLC use-case; TCP and QUIC also use similar methods.
Clock-based events. There are clock-based events such as
scheduler actions, where user packets are collected into a
buffer, and the scheduler waits for the right slots where
the user’s device listens to the channel. Then, the scheduler
sends the packets with high accuracy timing. These steps
require buffering, as discussed above, and time sync (e.g.,
IEEE 1588-PTP), and internal clock-based events. Other
possible use cases for these functions are traffic shaping
and keep-alive messages.
Modularization. More complex dataplane pipelines would
require code pieces from different developer teams or units.
This would require a certain level of modularity where all
teams could work on their respective code pieces while in-
tegration is still straightforward. In P4, this is only partially
supported via control blocks: each developer or unit can
develop its control module with a parser and a deparser
that deal with headers necessary for the given functionality.
This is good enough for simple testing, but integrating such
functionalities into a larger pipeline lacks any support from
P4. The common apply block and the parser have to be
manually generated together with the used metadata and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 3: 5G User Plane Functions: Uplink and Downlink

UPF-UL UPF-DL

Match Outer L2 and L3
VxLAN Decapsulation

Apply Metering
Match 5 Tuple, set Queue Id

Validate IPv4/GTP
Match UPF IPv4 Match User Device IPv4

Apply global firewall rules
GTP Decapsulation GTP Encapsulation

IP Routing towards Internet IP Routing towards eNodeB
VxLAN Encapsulation

L3 Routing towards DCGW
Outer L2 Forwarding

header structures. Note, however, that this is not a functional
limitation.
Stage-based pipeline setup. This limitation is only valid
for the Tofino hardware target, but since this is currently
the main P4 hardware, its limitations also limit the usability
of the language. Tofino uses a stage-based approach for
implementing the match-action blocks. The main limitation
is that if a function uses a value as input, it cannot exist in
the same stage as the function generating the given value.
Also, a stage has access to multiple resources (SDRAM,
TCAM, registers, etc.). If one type of resource becomes fully
utilized, the pipeline will need to use multiple stages for
the given functionality, in which case other resource types
will be underutilized. This can be optimized a bit using
packet recirculation which can be seen as a tradeoff between
utilization and latency.
Others. Other missing lower-priority features include the
multiple access to the same table, counter, or register (e.g.,
routing and encapsulation), utilizing conditional header field
write in deparser, and better use of header stacks to support
multi-level encapsulation. These were not mandatory to
implement our use cases but would make the life of the
network function developer easier.

5. P4-based hybrid 5G UPF Pipelines

This section first highlights the UPF and gNodeB func-
tions. Then, we present the general architecture of hybrid
design options for the data plane. Next, we focus on de-
signing and implementing the proposed P4-based hybrid 5G
UPF and gNodeB pipeline using different targets.

5.1. UPF P4 Pipeline

The UPF is one of the 5G core networks functions, as
illustrated in Figure 2. As discussed, the UPF functionalities
in Section 2.1, we define them in P4 for Tofino Native
Architecture (TNA), as shown in Table 3. We discuss each
of them as follows:
L2/Ethernet and Virtualization. For each incoming packet,
lookups are performed for both source and destination MAC

addresses. VxLAN is used to support the isolation between
VNFs in multi-tenant environments. When the switch re-
ceives the packet, the VxLAN (de-)encapsulation of the L2
frame within the UDP header is performed. The routing
applies for both UPF uplink (UPF-UL) and UPF downlink
(UPF-DL) towards data center gateways (DCGWs).
QoS Support. Quality of Service (QoS) is used to provide
better service to the selected network traffic. Without QoS,
all the incoming packets are treated as best efforts. Our 5G
UPF P4 code supports the QoS. The switch matches on five
tuples to apply the meter and set the queue Id. Meter is
used to drop the packets when the packet rate reaches the
threshold. SDN controller pushes the entries to decide the
queue Id based on the traffic type.
Firewall. The validity check of the IPv4 or GTP header
decides the direction of the incoming packet, uplink, or
downlink. Then, the global firewall rules are applied and
block unauthorized traffic access to the server.
GTP Decap/Encap and IPv4 Routing. For the uplink
direction, the GTP header is removed from the incom-
ing packet and forwarded towards the data center getaway
(DCGW) for accessing the internet. In the downlink direc-
tion, the tunnel endpoint identifier (TEID) allotted and the
packet is routed towards the gNodeB.

5.2. gNodeB User Plane

Next-generation NodeB (gNodeB) is located in the 5G
Radio Access Network (RAN) close to the base station. In
the downlink direction, 5G UPF forwards subscribers’ traffic
to the appropriate gNodeB node encapsulated into GPRS
Tunnel Protocol for user data (GTP-U). The gNodeB first
decapsulates the downlink packets, ciphers the payload, adds
PDCP (Packet Data Convergence Protocol) and RLC (Radio
Link Control) headers, and then forwards the packet towards
the user equipment. The gNodeB uses ARQ for reliable
transport, meaning that all the downstream packets need to
be stored in a packet buffer until an acknowledgment arrives.
If the acknowledgment does not arrive within a timeout
period, the packet is re-transmitted, and the appropriate
acknowledgment timer is restarted. In the upstream pipeline,
we have to handle acknowledgments (RLC control packets)
that are not forwarded and uplink user data encapsulated in
RLC/PDCP packets. Upstream user data must be deciphered
and then forwarded via a GTP-U tunnel to a UPF instance
in the 5G-Core. The complete pipeline is given in Figure 6.

5.3. General Architecture of Hybrid 5G Data Plane

Figure 4 shows the general architecture of hybrid UPF.
Switch ASIC is connected with two different P4 targets: 1)
x86 server behaving as a P4 SW switch, and 2) SmartNIC.
The incoming packets at switch ASIC can be routed in three
different paths based on the application’s requirement. Three
different routes have been shown in Figure 4.

In the fast path, incoming packets pass through NFs
running on the P4 programmable switch ASIC and are sent
to the output port. For slow path, packets can be routed

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

P4 Programmable
Switch ASIC

Standard
NIC DPDK

DP-Agent

APP APP

SDN Controller

DP-Agent DP-Agent
x86 x86

P4Runtime

APP

 P4-
SmartNIC

Figure 4: General architecture view of hybrid data plane

through an SW switch running on x86. For the slow path,
there may be different options also in terms of hardware
and programmability support on the x86. For example, if the
host is equipped with a P4 programmable smart NIC, (parts
of) the processing pipeline or parts of the overall traffic
can be completely or partially processed by the SmartNIC
(right side of the Figure 4). The remaining parts of the
processing pipeline or user traffic can be processed in the
CPU. If a standard NIC is available (left side of Figure 4),
the NIC forwards user traffic to the x86 (e.g., through a
software switch). Then, the remaining traffic or parts of the
pipeline can be processed on the CPU using frameworks
such as T4P4S [45], which integrates more general packet
processing with software switch functionality or using, e.g.,
a P4 compiler that compiles from P4 to DPDK code directly.

There are two main approaches to partitioning the packet
processing pipeline. In the first method (horizontal split),
the pipelines have identical logic, but parts of the user
packets are processed on each back-end, e.g., SmartNIC or
host, observing the latency and capacity constraints of the
different users (e.g., low latency traffic will be processed
inside the programmable SmartNIC, while parts of the high
capacity user traffic will be processed at the x86). This
has the benefit that low latency traffic that is completely
processed in SmartNIC does not need to transit the PCIe
bus and is completely kept inside SmartNIC.

In the second method (vertical split), the logic of the
pipeline is split into basic functional blocks; thus, process-
ing the pipeline requires multiple processing backends to
process each packet. Each backend will process parts of the
pipeline (e.g., the SmartNIC performs a GTP de-tunneling
operation while the host does table lookups and header
rewriting). Using this approach, we need to consider the
architectural constraints for hardware acceleration (e.g., a
crypto operation should be run on a device with effective
crypto support or a crypto chip). Also, this approach follows
the Service Function Chain concept but is more challenging
to realize due to the consideration of different hardware
capabilities that need to be considered for allocating the

individual atomic processing tasks.
Such hybrid approaches can be cost-effective. Smart-

NICs do not significantly add up the cost because standard
NICs can be replaced by SmartNICs, adding additional
functionalities. On the other hand, the Tofino can be used
instead of a ToR switch without much cost difference. So,
the hybrid approach using SmartNICs and Tofino switches
provides more programmability and performance with only
a few additional economic expenses. Also, this approach
would be more cost-effective than proprietary custom-made
ASICs for beyond 5G use cases.

Next, we discuss our proposed design models using
a vertical and horizontal split of the packet processing
pipeline.

5.4. Hybrid-UPF using switch ASIC and x86

Tofino ASIC is a high-performance P4 programmable
switch that can run up to 6.5 Tbit/sec speed. VNF can
be offloaded to the Tofino switch ASIC for achieving high
performance. VNF offloading depends on the complexity of
the functions because of the limited resources and flexibility
of programmable hardware to guarantee low and bounded
per-packet latency (discussed in Section 4.1). Therefore,
scalability for user equipment (UE) can be a significant issue
for the 5G UPF running on programmable switch HW with-
out compromising the performance. As given in Table 3, we
perform a UE IPv4 address match with GTP encapsulation
as an action for downlink UPF. In Tofino, there is limited
SRAM memory per stage to keep the hash entries to perform
the match. Instead, telecom operators require the limited
and precious resources in the programmable switch ASIC
for crucial control functions such as ACL rules, customized
forwarding, and other network applications. Thus, we are
allowed UE matches in thousands only, while the UEs can be
in a million, especially when the 500 billion mobile devices
are expected to be connected to the Internet by 2030 [1].

We can adopt a number of different strategies to over-
come this problem, such as scaling out the full UPF pipeline
across multiple programmable switch ASIC or disaggre-
gating the UPF functions into different programmable tar-
gets. In real network traffic, the majority (i.e., 90-95%)
are inactive UEs or non-HHs (i.e., low throughput), while
the minority (i.e., 5-10%) are active UEs (i.e., HHs, high
throughput) at a time [7] [23]. Also, most of the traffic in
the network is contributed by HHs. For example, if we target
to support 5 million UEs IoT (Internet of Things), 5-10%
could be smartphones, 10-20% wideband IoT devices, and
the rest can be narrowband IoT devices. The wideband and
smartphones or HHs can be maintained on the Tofino switch
to consuming fewer hardware resources. The rest flows (i.e.,
non-HHs or narrowband IoT devices) can go through the
x86 server without degrading the Key Performance Indicator
(KPI) for the 5G network. We propose a hybrid design
based on Heavy-Hitter (HH) detection. The proposed hybrid
design leverages the Inter Packet Gap (IPG) based HH
detection method [38] entirely implementable in a P4 data
planes [42] to reduce the control channel overhead with high

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

Pr
og

ra
m

m
ab

le
Pa

rs
er

Flow is HH
?

H
ea

vy
-H

itt
er

D
et

ec
to

r

G
TP

 E
nc

ap
Ta

bl
e

Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

No

Yes

Install entry to HW switch

H
ea

vy
-H

itt
er

D
et

ec
to

r

Stratum

Flow is HH
?

Pr
og

ra
m

m
ab

le
Pa

rs
er

L2 Tables

IPv4 Validity

Fi
re

w
al

l U
L

Ta
bl

e

G
TP

 D
ec

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

U
L

Ta
bl

e

Fi
re

w
al

l D
L

Ta
bl

e

G
TP

 E
nc

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

D
L

Ta
bl

e

Hit /
Miss

Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

R
em

ov
e

En
try

In
st

al
l

En
try

)

Tofino HW

SW

UL

DL

M
at

ch
 IP

v4
de

st
in

at
io

n

Pr
og

ra
m

m
ab

le
Pa

rs
er

L2 Tables

IPv4 Validity

Fi
re

w
al

l U
L

Ta
bl

e

G
TP

 D
ec

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

U
L

Ta
bl

e

Fi
re

w
al

l D
L

Ta
bl

e

G
TP

 E
nc

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

D
L

Ta
bl

e Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

SmartNIC

UL

DL

Pr
og

ra
m

m
ab

le
Pa

rs
er

L2 Tables

IPv4 Validity

Fi
re

w
al

l U
L

Ta
bl

e

G
TP

 D
ec

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

U
L

Ta
bl

e

Fi
re

w
al

l D
L

Ta
bl

e

G
TP

 E
nc

ap
Ta

bl
e

IP
v4

 R
ou

tin
g

D
L

Ta
bl

e Pr
og

ra
m

m
ab

le
D

ep
ar

se
r

UL

DL

Hit

PF

Miss

VF VF

RX TX

RX VF

SW

(a) P4 Based Hybrid Tofino-HW / x86 (b) P4 Based Hybrid SmartNIC-HW / x86

ONOS Controller

Controlplane Agent

P4Runtime
gNMI

Controlplane Agent

ONOS Controller

RX TX

No
(GTP Hit)

Yes
(GTP Hit)

No
(GTP Miss)

TX

)

P4Runtime
gNMI

P4Runtime

Controlplane Agent

Figure 5: P4-based hybrid Tofino-HW/x86 and SmartNIC/x86 architectures for UPF.

detection accuracy. In this case, the switch relies on a push-
based approach to report the flow as HH to the controller
for fast reaction. The proposed hybrid solution can be based
on any existing HH algorithm (e.g., [47] [48]) compatible
with Tofino HW with a minor impact on overall performance
based on how fast the algorithm reports the HH flows to the
controller.

While the above approach can improve the overall scal-
ability of the UPF, it does not guarantee that all non-HH
flows are delay-critical. Offloading delay-critical flows to
x86 can impact the required service level agreement (SLA).
Other offloading criteria such as 3GPP slice definitions can
be adopted for HW processing instead or in addition to HH-
based offloading. For instance, traffic flows can be classified
based on the definition of network slicing such as match on
6-tuple (i.e., 5G user source and destination IPs, 5G user
source and destination ports, Differentiated Services Code
Point (DSCP) and GTP Tunnel ID) to define the network
slice and route the traffic accordingly [32]. The delay critical
traffic can be forwarded to the programmable switch ASIC,
and based on the priority; it will be assigned to the specific
queues [34]. The network slicing implementation and queue
management are out of the scope of this work, and will be
considered in future work.

As shown in Figure 5(a), we offload the entire UPF
pipeline to the Tofino switch while the GTP Encap table

is maintained in both x86 and Tofino. For the uplink, the
packet goes directly through the Tofino switch. In the case
of downlink, the packet is routed based on the HH detector
and UE address match (i.e., GTP hit/miss). Suppose the
packet is detected as HH with GTP hit. In that case, the
first packet is sent to the ONOS (Open Network Operating
System) controller to install the corresponding table entry
to the switch, and the rest of the packets of that flow follow
the HW pipeline to exit. At GTP hit for non-HH flow, entry
is removed from the table, while packet goes through the
x86 server for GTP hit to perform the match on UE address.

5.5. Hybrid-UPF using SmartNIC and x86

As shown above, the SmartNIC can be used standalone
to process packets. However, its operation becomes more
flexible when combined with host-based packet processing.
Indeed, in an NFV setup, there are typically multiple con-
tainers on the host that process packets. The SmartNIC can
do more complex tasks (e.g., en/decapsulating headers) than
forwarding packets between the host and the network. Con-
sequently, several functions of the whole packet processing
pipeline can be offloaded to the SmartNIC, including table
lookups, firewalling, header rewriting, performing crypto
operations, or load balancing among the different VNF
processing cores in the host. Consequently, a processing

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

From buffer service

From decryption service

From encryption service
D

ire
ct

io
n

PD
C

P
Ac

k

St
op

 B
uf

fe
rin

g

Up
lin

k

Downlink

Yes

D
ec

ry
pt

io
n

No R
em

ov
e

PD
C

P
+

R
LC

R
eb

ui
ld

 G
TP

En
cr

yp
tio

n

R
em

ov
e

G
TP

Ad
d

R
C

L
+

PD
C

P

C
lo

ne
 P

ac
ke

t

St
ar

t
Bu

ffe
rin

g

Buffering Service

Hash Table

Current
bucket Time Out

Yes

No

Lookup In
Hash Table

Success

Free Packet

Keep a copy in the buffer

Clone Packet

Pr
og

ra
m

ab
le

pa

rs
er

Remove

Insert

Pr
og

ra
m

ab
le

de

pa
rs

er

En
cr

yp
tio

n
en

gi
ne

C
ry

pt
o

Se
rv

ic
e

D
ec

ry
pt

io
n

en
gi

ne

UL

DL

HW

SW SW/HW

Figure 6: P4-based hybrid pipeline of the gNodeB .

pipeline can be partitioned, and some packets can be pro-
cessed on the SmartNIC part of the pipeline and/or inside
the host. Note, if part of the pipeline is inside the host, costly
transitioning of the PCIe bus is required twice.

We have implemented an entire UPF pipeline following
the horizontal split concept on the Netronome SmartNIC
using a hybrid setup, where parts of the users are processed
fully in SmartNIC. In contrast, other users are processed
in the host. We created multiple SR-IOV (Single Root
Input/Output Virtualization) Virtual Function (VF) ports in
the host. We created a DPDK docker image that also im-
plements the UPF pipelines using T4P4S, which compiles
the UPF pipeline into DPDK code and wraps the data plane
implementation into a docker container. Each container was
bound to its own isolated CPU core and pinned to its
own SmartNIC VF port. The P4 pipeline running on the
SmartNIC has full control of packet forwarding to-and-from
these VF ports. Such an approach requires load-balancing
in the SmartNIC among the different processing containers
in the x86 to select which VF port to send the packet to.

In our approach, packets entering the SmartNIC are
parsed first in its P4 pipeline. We perform an additional
exact match on the IPv4 UE address using an additional
table (see Figure 5(b)) that determines which flows will
be offloaded to the entire UPF pipeline in the SmartNIC
(IPv4 destination). If there is no match, the SmartNIC will
forward the packets towards the host on one of the VF ports

for further processing using a hash-based load-balancing on
the IP-destination address. If there is a hit, packets will
be offloaded and processed fully on the SmartNICs UPF
pipeline before emitting back on the physical ports, thus
completely bypassing host processing. Consequently, deter-
mining which tunnels will be processed on the SmartNIC or
the host requires an additional table lookup in the SmartNIC.
This allows a policy-based offloading for prioritized users
requiring, e.g., low latency services implemented through
the control plane by populating proper table entries.

5.6. Hybrid-gNodeB Design and Implementation

Hybrid gNodeB implementation is a mix of two sep-
arate targets. Conversely, the direction choice and header
operations are programmed in P4 for TNA, while the
other not hardware supported operations (such as encryp-
tion/decryption, buffering, and time-based retransmission)
are implemented using DPDK.

Packet processing in the gNodeB branches along with
the upstream and downstream directions, as shown in Figure
6. The downstream direction receives GTP encapsulated
packets. It saves the GTP TEID field, decapsulates the GTP
header, and creates the RLC and PDCP headers with the
PDCP serial number (SN) calculated from the TEID value.
The newly constructed PDCP packet is sent to the encryp-
tion service, from where the encrypted packet is received

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Buffering
1: i := 0; n := resubmission interval in ms
2: for j IN 1 . . . n do
3: bucket[j] := empty bucket
4: end for
5: while True do
6: if 1 ms passed then
7: i := (i+ 1)%n
8: for pkt IN bucket[j] do
9: if hashtable.contains(pkt.id) then

10: pkt2 = clone(pkt)
11: send_out(pkt2)
12: else
13: bucket[j].remove(pkt)
14: free(pkt)
15: end if
16: end for
17: end if
18: pkt := receive_packet()
19: if pkt is PDCP_STATUS then
20: hashtable.remove(pkt.id)
21: else
22: bucket[j].add(p)
23: hashtable.insert(pkt.id)
24: end if
25: end while

asynchronously later. As a next step, the encrypted packet is
cloned. One copy goes through the appropriate downstream
port, while the other is transmitted to the buffering service.

The upstream direction handles incoming PDCP packets.
PDCP protocol distinguishes status messages (acknowledg-
ments) and data packets. Acknowledgments are forwarded
to the buffering service without modification. While for data
packets, the gNodeB has to rebuild the GTP header. After
the PDCP and RLC header removal and the proper GTP
encapsulation, the packet goes to the upstream port.

5.6.1. Buffer as a Service (BaaS). RLC protocol requires
reliable communication, with guarantees that packets can
not be lost. Packets have to be constantly resubmitted until
acknowledged by the UE. To achieve that, we have to imple-
ment a buffering and automatic packet resubmission service.
However, as mentioned in Sec 4.2, several limitations in
the current P4 language do not allow us to implement such
services. The key for buffering is to have a large amount of
memory to buffer packets long enough to hold at least an
RTT-long stream of downlink packets. What, as discussed
above, is not possible in current hardware switches. Auto-
matic repeat request (ARQ) is an error-control technique
that uses acknowledgments and timeouts to achieve reliable
communication. It requires clock-based actions to be able to
resend unacknowledged packets. P4 currently only supports
packet-based actions, so there is no way to use timers;
therefore, to implement such a mechanism, we either need
to send a flow with a consistent rate just to keep track of
the time or outsource the solution to an external service.
To overcome every limitation, we chose to implement the
buffering service, including the ARQ as an external DPDK
service on x86, as shown in Figure 6.

The implementation details of the buffer service compo-
nent are given in Algorithm 1. We use n buckets, where n

TABLE 4: Resource usage in Tofino switch ASIC

UPF-Tofino.p4 HH-IPG.p4 H-UPF.p4

Resource
10K
(%)

430K
(%)

NA
(%)

10K
(%)

430K
(%)

Exact Match Input Xbar 0.8 1.6 5.0 5.9 6.5
Hash Bit 1.8 4.5 2.8 8.6 12.8

Hash Distribution Unit 0.0 0.0 29.2 29.2 29.2
Meter ALU 0.0 0.0 10.4 10.4 10.4

SRAM 1.9 32.0 1.5 3.9 34.4
TCAM 0.0 0.0 4.2 6.3 2.1

VLIW Instruction 1.8 3.4 4.7 6.8 7.8
Exact Match Result Bus 1.6 3.1 8.3 10.4 12.0

is the number of milliseconds for which packets should be
buffered. Every millisecond, we move to the next bucket and
process every packet contained in the bucket. If the packet
id is found in the hash table, it is resubmitted; otherwise,
it is dropped. When the bucket is fully processed, we start
handling incoming packets. Upon a packet arrival, we first
check to see if it is a status message or not. Data packets
must be buffered, the id of each packet is stored in the hash
table, and the packets are placed in the current bucket. For
each incoming ACK, the packet ids are removed from the
hash table.

6. Experimental Evaluation

In this section, we experimentally evaluate each hybrid
pipeline design presented in the previous section using
real-time traces and artificial workloads. We conclude by
showcasing two use case scenarios. Altogether, we aim to
answer the following questions:
• How do hybrid approaches improve the scalability of P4-

based 5G data planes?
• Which and how much are the P4 Tofino hardware re-

sources consumed by our hybrid 5G UPF pipelines?
• What is the performance (throughput and latency) of our

hybrid UPF for different target combinations, varying UE
sessions, and HH/offloading configurations?

• What is the throughput performance of the hybrid gNodeB
buffer service for a varying amount of CPU cores, and
what are the practicality implications?

• Which QoS improvements in terms of Flow Completion
Time are possible in our hybrid UPF implementations?

6.1. Hybrid-UPF (Tofino + x86)

6.1.1. Methodology. We analyze the performance using a
Barefoot Tofino switch ASIC (Edgecore Wedge 100BF-32X)
and x86 server with Intel Xeon D-1518 processor (4 CPU
cores, 2.20 GHz) for the UPF application generated by the
MACSAD compiler for ODP-DPDK x86 targets [30]. Tofino
is connected with an x86 server with 10G SFP+ interfaces,
as shown in Figure 5(a), for offloading traffic based on
the HH detector running on Tofino. We use the NetFPGA-
SUME based OSNT [6] as a traffic generator running on

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 5: Scalability analysis with UPF-Tofino and H-UPF

UPF-Tofino H-UPF(Tofino+x86)
SRAM 60% 34.4%(Tofino)

UEs 850K 430K(Tofino)+15M(x86)

an x86 server (Intel Xeon D-1518) with 10G SFP+ inter-
faces connected to the Tofino switch under test (DUT). For
pushing the required table entries related to the UPF and
HH detector, we use the ONOS controller connected with
Tofino switch supported to P4Runtime. In the case of UPF,
running on x86, we use the MACSAD controller to push
the required entries.

We use CAIDA-2016 [9] ISP backbone link traces for
evaluation. CAIDA 2016 contains the anonymized passive
traffic traces from the equinix-chicago high speed monitor.
We replay these traces on line rate (i.e., 10 Gbps) for our
hybrid design evaluation. The traffic traces are available
for four different days, and each is around 60 Secs long
and contains around 20 Million packets and 800K flows.
To analyze the performance of different flows or UEs, we
split or concatenate the traces and prepare 100K, 800K, 1M,
and 2M flow traces. Since the DDR3 memories of OSNT
NetFPGA-SUME are 4 Gbytes, we can load a maximum of
around 2M flows to replay at a 10 Gbps rate.

6.1.2. Resource Utilization. For the programmable switch
ASIC, the P4 pipeline of hybrid-UPF (H-UPF.p4) is around
1000 lines of code. We add IPG based heavy-hitter (HH-
IPG.p4) functional block to the UPF P4 pipeline for hybrid
design. H-UPF.p4, running on the Tofino switch, classifies
the incoming packets based on HH and routes the non-HH
flow packets to the x86 server to match the UE IPv4 address
and GTP encapsulation for achieving higher scalability.

To analyze the resource consumption on the Tofino
switch, we focus on different resources shown in Table 4.
The exact match input crossbar is used for choosing input
keys for exact match lookup, while the hash bit is for table
lookup. Hash distribution unit is utilized to map hash output
to Packet Header Vector containers without using any table
lookup. Meter ALU and SRAM are used for stateful mem-
ory and exact match lookups and action tables, respectively.
As shown in Table 4, we notice that all resources are used
less than 5% for UPF-Tofino, but SRAM is around 32% for
exact match lookups of 430K flows. For HH-IPG, 29.2%
of the hash distribution unit is used because of hashing
used to index the register and table and compute the flow
ID. Therefore, adding the HH functional block to the UPF-
Tofino for hybrid design shows a significant difference only
for the Hash distribution Unit compared with UPF-Tofino.

6.1.3. Scalability. Offloading 5G UPF to the Tofino HW
provides high performance; however, it is hard to scale the
number of UEs because of the HW resource limitations. In
our proposed hybrid design, we can significantly scale the
number of UEs with high performance. For evaluation, we
increase the table size, where we perform the matches on

UE IPv4 address in Tofino and try to hit the maximum pos-
sible SRAM utilization. However, to evaluate the maximum
number of UEs in Tofino, we must carefully optimize the
H-UPF P4 code to manage the table dependencies to utilize
maximum SRAM. When we add the HH-IPG functional
block to the UPF-Tofino, the conditional statement can be
a cause to keep HH-IPG and GTP Encap table in separate
stages, which reduces the SRAM utilization. We optimize
the code and try to keep both HH-IPG and GTP Encap table
without any conditions, which allows the UE IPv4 matches
and action in parallel to HH-IPG.

Table 5 presents the maximum SRAM usage with the
number of UEs for UPF-Tofino and H-UPF. The UPF-Tofino
uses 60% of SRAM with a maximum of 850K UEs, while
H-UPF for Tofino utilizes 34.4% of SRAM with a maximum
of 430K UEs treated as HH. For practical cases, 430K HH
flows would be sufficient for 10-100Gbps links. As shown
in Table 6, the number of HH flows is less than 700 in all
the given threshold ranges for CAIDA-2016 traces captured
on the 10G link. For non-HH flows to keep on x86, we
insert up to 15M flows to H-UPF running on x86 using
the MACSAD compiler. However, we can keep more than
15M (e.g., 64M, 5 tuple keys) that fits in the CPU cache
depending on the server memory specifications.

6.1.4. Performance. The performance of UPF is evaluated
in terms of throughput and end-to-end latency. We analyze
the throughput in the worst-case scenario where packets are
smaller (payload is removed from all packets because of
the anonymized dataset). The switch receives the packet
from the data network and encapsulates it with the GTP
header, so the packet size is around 104 Bytes used for
performance evaluation. To evaluate throughput, we explore
3 cases: (1) UPF is running entirely on the x86 server (UPF-
x86), (2) UPF offloaded to Tofino switch (UPF-Tofino), and
(3) HH flows on Tofino, and non-HH flows go through the
Tofino and then x86 server to perform UE address match
and encapsulation (H-UPF). All three cases are evaluated
for a different number of UEs and 4 Days of CAIDA-16
traces. In addition, H-UPF is also analyzed for different HH
threshold ranges.

As shown in Figure 7(a), as expected, UPF achieves a
maximum of 2-3 Mpps, while UPF-Tofino is 3xtimes faster
than x86 for 100K and 800K UEs. Also, we notice that the
UPF-Tofino performance does not reach the line rate (i.e.,
10 Gbps) because Tofino drops the IPv6 traffic in CAIDA
traces. On the other hand, H-UPF performance lies between
them and reaches up to 6-7 Mpps. Since UPF-Tofino hits the
limitation to run a maximum of 850K UEs discussed in the
previous section, we evaluate the performance of UPF-x86
and H-UPF for 1M and 2M UEs. H-UPF performs 2xtimes
better than UPF-x86. We also note that the number of entries
to perform exact matches impacts the performance.

Figure 7(b) shows the performance using CAIDA-2016
traces of 4 different days. However, we do not see any sig-
nificant changes in the performance. In Figure 7(c), H-UPF
is analyzed for different HH threshold ranges. For better
understanding, we make Table 6, showing the number of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

TABLE 6: The number of Heavy-Hitter per second for different threshold ranges, where ’f’ represents the total number of
flows and ’n’ is the total number of packets. We get around the same number of HH flows per second for f ≥ 500K.

HHs/sec (f=100K, n=1M) HHs/sec (f=500K, n=9M)

ISP Trace ≥2 Mbps ≥5 Mbps ≥10 Mbps ≥20 Mbps ≥2 Mpbs ≥5 Mbps ≥10 Mbps ≥20 Mbps

CAIDA 2016/01/21 632 186 56 23 513 107 26 13
CAIDA 2016/02/18 612 162 46 16 509 102 19 10
CAIDA 2016/03/17 646 193 62 27 528 119 35 16
CAIDA 2016/04/06 648 196 60 26 518 117 32 17

Figure 7: Throughput (TP) comparison among UPF on x86 (UPF-x86), Tofino (UPF-Tofino) and hybrid UPF on Toinfo+x86
(H-UPF). For H-UPF in Figure(a) and (b), the Heavy-Hitter threshold is set to 2 Mbps. The first y-axis shows the TP in
Gbps and the second y-axis represents the TP in Mpps (in red color).

HH flows per second for different ranges of HH thresholds
(i.e., 2, 5, 10, and 20 Mbps). For 2 Mbps, Tofino keeps
around 600 HH flows, while other flows go through the
x86 server. Since 600 flows can have two or more than 2
Mbps flow speed, H-UPF improves throughput by around 3
Mpps. Also, we notice that H-UPF has less improvement in
throughput for higher HH thresholds because of less number
of HH flows (i.e., 10-25 flows of 20 Mbps threshold).

For UPF latency, we use OSNT, connected with Tofino
HW with 10G interfaces, to send packets at the line rate and
calculate latency at the OSNT receiver end when the link is
saturated. As shown in Figure 8(a) and (b), as expected, UPF
latency is around 1.1 to 1.23 microseconds on Tofino HW.
However, for x86, latency is between 0.45 to 0.85 msec. We
also notice that latency is affected by increasing the number
of flows because of the exact match lookup. For H-UPF,
we analyze the impact on latency for non-HH flows passing
through Tofino and then x86 to match the UE IPv4 address.
As shown in Figure 9, offloading around 600 HH flows to
the Tofino in case of 2Mbps threshold, we observe lower
latency of non-HH flows because of reduction in the x86
bottleneck, but for other threshold values, we do not see
any changes compared to UPF-x86.

6.1.5. Runtime Flow Classification and HW Offloading.
As discussed in Section 5.4, we classify the incoming traffic
based on the HH algorithm running on the Tofino hardware
and then re-route the packet depending on the algorithm
decision. To understand the percentage (%) of HH flows
offloading on runtime and their overall bandwidth occu-
pancy, we use CAIDA-2016 ISP backbone link traces [9]
for analysis on a microsecond scale. We replay the CAIDA

Figure 8: Latency for UPF-Tofino and UPF-x86.

Figure 9: Latency of H-UPF for non-HH flows at different
Heavy-Hitter threshold ranges.

traces on line rate (i.e., 10 Gbps) and analyze the number
of HHs and their bandwidth occupancy.

As shown in Figure 10, the analysis is performed on
the two different HH thresholds values, i.e., 2 Mbps and 20
Mbps. Table 6 provides more insights on the number of HH
values based on the total number of flows per sec for other
threshold values. In Figure 10, for both the threshold values,
only a few HHs utilize 10-40% of the link bandwidth. This
confirms that handling heavy flows within the programmable

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

100.00

98.00

96.00

(a) = 2 Mbps

(b) = 20 Mbps

Time (in sec)

Time (in sec)

%
 o

f H
H

 a
nd

 n
on

-H
H

 fl
ow

s

Ba
nd

w
id

th
 o

cc
up

an
cy

 (%
)

Figure 10: Percentage of HH and non-HH flows and their
impact on link bandwidth using CAIDA-16 traces for HH
threshold 2Mbps and 20Mbps. The same behaviour of flows
has been seen for long duration interval.

switch ASIC, where the resources are limited, would be a
better choice to make the network more scalable with high
performance.

6.2. Hybrid-UPF (SmartNic + x86)

6.2.1. Methodology. To evaluate the hybrid UPF design
with smartNIC offloading, we set up a testbed consisting
of the Netronome Agilio CX 2x40G SmartNIC (split into
8x10G links) mounted inside a server with one Intel(R)
Xeon(R) Silver CPU with Hyperthreading (HT) enabled for
20 threads at 2.2 GHz each.

We use NetFPGA running the OSNT traffic generator
to replay synthetic packet traces while measuring latencies
and aggregate throughput. These packet traces are static and
pre-generated according to test parameters. Statefulness is
pre-populated in the NIC and x86 to match the generated
traces, including offloading decisions and tunnel encapsula-
tion metadata for downlink traffic.

The non-deterministic performance of the NIC- and x86
architectures necessitates a wide range of tests to identify
performance anomalies and ensure system stability. We have
therefore performed thorough tests with varying numbers of
active UEs, traffic intensities, offloaded UEs, allocated x86
cores, and overall traffic characteristics for both uplink and
downlink flows. Packet sizes range from 128B-1024B, and
the packet emission rate aims to reach the target aggregate
throughput on the downlink link (where encapsulation head-
ers are included).

The SmartNIC is responsible for performing UPF pro-
cessing of offloaded traffic and delivering non-offloaded
packets down to one of the T4P4S containers running the
entire UPF pipeline. Non-offloaded traffic is load-balanced
among docker containers through RSS-like hashing of the
IPv4 address of the UE, avoiding potential reordering of
per-flow packets. The offloaded flows are explicitly stated
in an exact-match lookup table in the SmartNIC pipeline,
which the controller updates.

(a) (b)

x

x

x

x

x*
*
*
*

*

Figure 11: Latency measurements with 100K UEs and 128B
packets. (a) Varying number of UPF processing contain-
ers/cores, showing UPF capacity scaling. (b) Comparison
of offloaded and non-offloaded tunnels, and the imposed la-
tency for non-offloaded traffic by the SmartNIC @1.5MPPS.

6.2.2. Latency Performance. Figure 11 shows the base
latency of non-offloaded traffic, where all packets are pro-
cessed in T4P4S containers on the x86 host machine. The
maximum capacity increases near-linearly as we deploy
more T4P4S containers (i.e., performing UPF functionality
on more cores), showing that the smartNIC is capable of
performing decent load balancing while assigning traffic to
specific containers. When we use one container at a target
rate of 1.2 Mpps for processing 100K UEs, offloading all
traffic (blue) significantly reduces the experienced latencies
compared to traditional processing in x86 (orange, smart-
NIC in pass-through mode) as the additional PCIe transfer
contributes additional latency as well as a cache miss in-
side DPDK T4P4S container. Interestingly, when replacing
the smartNIC with standard Intel 10G interface (green),
lower latencies for host-only based processing is achiev-
able compared to using smartNIC in pass-through mode
(orange). This is attributed to the ASIC-based X710 intel
card, which has lower and more predictable performance
than the Netronome smartNIC, based on 800 MHz flow
processing cores. Also, the SmartNIC passthrough pipeline
requires an additional table lookup to identify if the packet
is to be processed in smartNIC or not.

We can also see in Figure 12 how SmartNIC offloaded
traffic experiences a much more stable performance, with
a near-nonexistent latency tail. Non-offloaded traffic, pro-
cessed in T4P4S, does suffer from a long latency tail which
can be problematic in several scenarios. We can also see
the latency impact on non-offloaded traffic by still passing
through the offloading program on the SmartNIC. However,
the SmartNIC achieves lower latency than T4P4S even while
T4P4S is bound to a fixed-function Intel x710 network card.

6.2.3. Throughput Performance. Figure 13 shows the
throughput of non-offloaded traffic in the 8-container T4P4S
setup, compared with offloaded traffic processed directly
in the SmartNIC. We can see how both of these targets
are capable of processing traffic in parallel, and we see in
Figure 12 how the SmartNIC-offloaded traffic outperforms
non-offloaded traffic in terms of latency. Also, note how
the performance of offloaded traffic is highest when fewer

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

90 600 1500 3000 4500 6000 7500 9000
Combined load (in Kpps)

101

102

La
te

nc
y

(in

se
c)

T4P4S,0% offloading
T4P4S,10% offloading
T4P4S,90% offloading

SmartNIC,10% offloading
SmartNIC,90% offloading
SmartNIC,100% offloading

Figure 12: Performance comparison of offloaded vs non-
offloaded tunnels in the hybrid UPF

1K 10K 100K
Number of UEs

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 (M

pp
s)

UPF-T4P4S, 1c
H-UPF(SmartNIC+T4P4S, 1c, 10% ofld)
H-UPF(SmartNIC+T4P4S, 1c, 90% ofld)
UPF-T4P4S, 4c

H-UPF(SmartNIC+T4P4S, 4c, 10% ofld)
UPF-T4P4S, 8c
H-UPF(SmartNIC+T4P4S, 8c, 10% ofld)
UPF-SmartNIC

Figure 13: Performance comparison of UPF running on dif-
ferent targets by varying the number of UEs (c: containers,
ofld: offloading, H-UPF: hybrid-UPF).

flows are offloaded due to less traffic competing for on-NIC
processing. Both offloaded and non-offloaded traffic pass
through the SmartNIC, which imposes a higher latency on
the non-offloaded traffic. When the SmartNIC is under a
higher load as P4 packet processing cores seem to be the
limiting factor due to the complex pipeline, delaying packet
forwarding towards the host. We, therefore, recommend al-
locating a manageable load for offloading on the smartNIC,
depending on the complexity of the pipeline operations.

6.3. Use Case Scenarios

In this section, we focus on showcasing and evaluating
the performance of the proposed hybrid designs in two
use case scenarios: (i) UPF QoS application, (ii) gNodeB
buffering service and (iii) gNodeB cryptographic service.

6.3.1. UPF-QoS. To meet the Quality of Service (QoS)
objectives, it is required to assign the queues of incoming
packets based on their priority levels. In practice, however,
due to some misbehaving flows (i.e., Heavy-Hitters - HH),
the queue buffer fills quickly, and packets start to drop or
causes delay for other flows. For a solution, we can keep
the normal flows in the P4 switch ASIC and re-route the
misbehaving or heavy-hitters to a high bandwidth path to
improve the QoS. Specifically, we consider delay-critical
(DC) flows and push them to the high priority queue. If the
switch detects any DC flow misbehaving (i.e., heavy-hitter)

gNodeB Upstream
Router

Sever
Sever

UPF.p4 +
HH-IPG.p4

q7
q6

q0

HHs

DC

1G

10G

1G

Controller

Stratum

P4Runtime

(a) QoS-HH Use-case Scenario

(b) Flow completion time with and without HHs offloading

UPF.p4

10G

SW

Tofino HW

1G

Figure 14: 5G mobile network scenario (a) and distribution
of Flow Completion Time (b) of delay critical flows, when
HHs IPG are re-routed to the high bandwidth link (red),
compared to a traditional pipeline (yellow).

in the same queue, affecting the flow completion time of
other DC flows, it will be re-routed to the high bandwidth
path.

As shown in Figure 14, we consider a mobile network
where the Tofino switch ASIC running the UPF pipeline
with HH functional block is connected with an x86 server
running with the same UPF pipeline. The Tofino switch and
x86 server are connected to three different hosts acting as
gNodeB, Application Servers, and Upstream Router facing
the Internet. Stratum [40] is used to configure the port
shaping rate from 10G to 1G interface to establish a QoS
analysis congestion environment. The required entries to
configure the HH algorithm and other match-action tables,
as are necessary for forwarding packets, are pushed using
P4 Runtime [28]. We used 20 TCP flows as delay critical to
download the 15 Mbytes data from the Internet for analysis.
These flows share the available link bandwidth.

We analyze three different test-case scenarios. First, as a
baseline, we analyze the Flow Completing Time (FCT) for
each delay critical TCP flow without any background traffic.
The second scenario represents a traditional setup, where
the FCT of DC flows are calculated with concurrent HH
DC flows (occupied 40% of link bandwidth with around 80
Mbps flow rate). Finally, in the third case, we show the FCT
gains of DC flows when the detected HHs are re-routed to
the high bandwidth path where the UPF pipeline is running
on the x86 server. Adapting the hybrid design with the HH
algorithm, we can see the difference in FCT for the different
scenarios, as shown in Figure 14(b). In the most realistic
traffic scenario (DC + HHs), the FCT distributions increase
around 1-2 Seconds, compared to baseline (DC). On the

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

Figure 15: Performance of the buffer service showing packet
processing rate and throughput scaling with the number of
cores for different packet sizes.

other hand, after offloading HHs to the SW path, the FCT
reaches around the same as the baseline.

6.3.2. Hybrid-gNB buffering service. As described in
section 5.6, the packet processing component of a base
station can be built using a P4 switch with a few generic
CPUs running the buffer as a service (BaaS) module. The
bottleneck at the BaaS is the focus of the analysis in the
next section.
Performance benchmarks. Our buffering service bench-
marks ran on three nodes. Node A handles the upstream
and the downstream (Intel XL710 40GbE NIC, 32GB RAM,
Intel(R) Xeon(R) CPU E5-2630 Processor); Node B, a
Stordis BF2556X-1T a P4 hardware switch; Node C, the
buffering service (Intel XL710 40GbE NIC, 64GB RAM,
Intel(R) Xeon(R) CPU E5-2680 v3 Processor).

As shown in Figure 15, the buffering performance scales
well with the number of cores. The one-core performance is
7.6 million packets per second using 128-byte packets while
scaling up to 8 cores 30 Mpps is reached. We can achieve
line-rate processing with just two cores with more realistic
packet sizes (e.g., 1024 bytes).
Calculations on gNodeB performance. The performance
of the BaaS module is mainly limited by the memory
architecture of the given CPU. The above measurements
show that on a reasonably low-performance machine with
four cores, this can hit 40 Gbps with average-sized packets
on the Internet (IMIX avg. = 353 bytes).

Note that the buffer modules only need a copy of each
downlink frame, meaning that its latency does not increase
the overall latency of the solution: the main packet path only
uses the Tofino switch. To sustain a peak rate of 200 Gbps
that a typical 5G base station handles, one will need five
low-end servers or two high-end servers. This would require
five or two ports on the switch. Additional 2+2 ports would
be used for the up and downlink directions.

It is clearly visible that in its current form, Tofino
is not suitable for such a network function - its perfor-
mance is severely underutilized: even the smaller version
has 32x100GbE ports and 3.2 Tbps switching capacity. The
maximum utilization of the gNodeB use case is below 20%,
which shows that such edge network functions would require
a different trade-off between capacity and memory size.
Sacrificing ports and switching capacity for some additional
RAM would lead to more suitable hardware for implement-
ing the packet processing functions of a gNodeB.

6.3.3. Hybrid-gNB cryptographic service. The crypto-
graphic service can be implemented using a purely software-
based approach or a cryptographic hardware accelerator like
Intel QAT. In environments where encryption is mandatory,
the cryptographic service could be the main bottleneck since
all packets must be passed through. To measure its effect,
we have created a simple DPDK-based application imple-
menting encryption and decryption operation (SNOW 3G)
as a software device (no HW acceleration). The evaluation
was done on the same machine as the buffer service. The
obtained single-core encryption performance was 4.6 MPPS
in the case of 64 Byte packet size, and it scaled linearly with
the number of cores where the scaling factor was about 0.87.
The average latency of the encryption step (64B packet)
on a single core was 0.212 microseconds; the DPDK-based
component resulted in 8-10 microseconds latency in normal
operation (non-overloaded). The software implementation
of cryptographic operations could be the main bottlenecks
in such a system, but there are cryptographic coprocessors
and accelerator cards like Intel QAT that can significantly
increase the performance of such computational heavy op-
erations. We had no access to such a card, but according to
the available performance tests [2], more than 40 Gbps with
Internet-average packet size can easily be reached with HW
acceleration.

7. Conclusion and Future Work

This paper explores hybrid design models for 5G UPF
and gNodeB, combining the features of different P4 targets
to make the user plane more powerful and flexible. Each
proposed hybrid approach has its trade-offs and seeks to
overcome P4 language limitations and challenges towards
realizing softwarized 5G data planes. Functions unsup-
ported in the native P4 language, such as ARQ and cipher-
ing/deciphering, are implemented in DPDK as P4 extern
functions. We vertically and horizontally split the entire
pipeline and compiled it on different P4 targets, namely x86,
SmartNIC, and Tofino ASIC. The extensive experimental
evaluation shows that hybrid user planes are an attractive
approach to meet feature requirements and improve overall
scalability with high throughput and low latency.

Besides acting as an infrastructure component, Tofino
ASICs are suitable for offloading heavy traffic flows if the
number of rules is relatively small. This way, programmable
HW pipelines are suitable for running a simplified user plane
(e.g., for user equipment not requiring complex treatment)
or for offloading specific users or flows selectively based
mainly on their intensity. SmartNICs are in-between smart
switches and CPUs when it comes to performance. So
although they are less limited in terms of memory and thus
the number of rules that could be handled, they can handle
much fewer heavy users. Their main tasks would be to act
as a protection and load sharing layer in front of the CPUs.
Besides that functionality, they could also run some user
plane functions roughly similarly to Tofino. Still, due to their
more limited bandwidth, the number of users or flows could
be smaller. Another option could be to run more complex

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

user plane rules in SmartNICs, this way entirely offloading
those users from the CPUs - this option was not covered
by the current study as the SmartNIC used for the tests
was not capable of handling that high complexity. As new
SmartNICs are expected to be available on the market in the
coming years, the offload architecture might also evolve.

To be able to carry out the proper placement of func-
tions, a critical aspect has adequate strategies to select
which flows or users are handled by hardware pipelines
and by the software counterparts. We leverage a heavy
hitter technique based on inter-packet gap metrics that runs
entirely in the P4 data plane at affordable resource costs
with high accuracy and timeliness. In the future, refinements
of the HH detection module along with other candidates
HW/SW splitting techniques and slicing mechanisms should
be explored. More specifically, we are already working on
an intelligent P4 ‘chained load balancer’ from P4 Tofino
hardware over SmartNIC to specific x86 cores handling
Kubernetes workloads for 5G applications. Latency-aware
load balancing capability is another research sub-track on
this front.

Based on our experiences, including knowledge and
technology transfer to business units of telecommunication
equipment providers, and analyzing the observed trends
of the networking community, we believe that hybrid
data planes are likely to become common in P4-like pro-
grammable data planes for different 5G flavors and other
networking domains. One final concluding remark would be
to expect scale-down (smaller fan-out) versions of Tofino
ASICs to fit better the needs of distributed edge and ra-
dio gNodeB systems in addition to edge-optimized servers
equipped with SmartNIC as programmable networking and
compute targets for 5G and beyond.

Acknowledgments

This work was partially supported by the Innovation
Center, Ericsson S.A., Brazil, grants UNI.64 and UNI.66.
S. Laki and P. Vörös thank the support of the "Application
Domain Specific Highly Reliable IT Solutions" project that
has been implemented with the support provided from the
NRDI Fund of Hungary, financed under the Thematic Excel-
lence Programme TKP2020-NKA-06 (National Challenges
Subprogramme) funding scheme. The views expressed are
solely those of the authors and do not necessary represent
Ericsson’s official standpoint.

References

[1] Cisco. Internet of Things, 2016. https://www.cisco.com/c/en/us/
products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf.

[2] DPDK Intel Cryptodev Performance Report, 2021. http://fast.dpdk.
org/doc/perf/DPDK_21_02_Intel_crypto_performance_report.pdf.

[3] NPL 1.3. Specification, 2021.

[4] Bose Abhik, Maji Diptyaroop, Agarwal Prateek, Unhale Nilesh, Shah
Rinku, and Vutukuru Mythili. Leveraging programmable dataplanes
for a high performance 5g user plane function. In 5th Asia-Pacific
Workshop on Networking, APNet ’21, page 1âĂŞ8, New York, NY,
USA, 2021. Association for Computing Machinery.

[5] Alveo SN1000, fully software defined, fully hardware acceler-
ated SmartNIC. [Available]:https://www.xilinx.com/applications/
data-center/network-acceleration/alveo-sn1000.html.

[6] Gianni Antichi, Muhammad Shahbaz, Yilong Geng, Noa Zilberman,
Adam Covington, Marc Bruyere, Nick McKeown, Nick Feamster,
Bob Felderman, Michaela Blott, et al. Osnt: Open source network
tester. IEEE Network, 28(5):6–12, 2014.

[7] Giulia Attanasio, Claudio Fiandrino, Marco Fiore, and Joerg Wid-
mer. Characterizing RNTI Allocation and Management in Mobile
Networks, page 189âĂŞ197. Association for Computing Machinery,
New York, NY, USA, 2021.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev.,
44(3):87âĂŞ95, July 2014.

[9] CAIDA. Anonymized Internet Traces. http://www.caida.org/data/
passive/passive_dataset.xml.

[10] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner,
Changhoon Kim, Jennifer Rexford, Robert Soulé, and Hakim Weath-
erspoon. Whippersnapper: A p4 language benchmark suite. In
Proceedings of the Symposium on SDN Research, SOSR ’17, page
95âĂŞ101, New York, NY, USA, 2017. Association for Computing
Machinery.

[11] DPDK. Home - DPDK. https://www.dpdk.org [Online; accessed 7-
June-2021].

[12] R Hattachi, E. Next Generation Mobile Networks, NGMN, 2015.
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_
Paper_V1_0.pdf.

[13] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilber-
man. The p4-> netfpga workflow for line-rate packet processing.
In Proceedings of the 2019 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’19, page 1âĂŞ9, New
York, NY, USA, 2019. Association for Computing Machinery.

[14] Enio Kaljic, Almir Maric, Pamela Njemcevic, and Mesud Hadzialic.
A survey on data plane flexibility and programmability in software-
defined networking. IEEE Access, 7:47804–47840, 2019.

[15] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
Cacheflow: Dependency-aware rule-caching for software-defined net-
works. In Proceedings of the Symposium on SDN Research, SOSR
’16, New York, NY, USA, 2016. Association for Computing Machin-
ery.

[16] James Kempf, Bengt Johansson, Sten Pettersson, Harald LÃijning,
and Tord Nilsson. Moving the mobile evolved packet core to the
cloud. In 2012 IEEE 8th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), pages
784–791, 2012.

[17] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive
survey on p4 programmable data plane switches: Taxonomy, appli-
cations, challenges, and future trends. IEEE Access, 9:87094–87155,
2021.

[18] Ralf Kundel, Tobias Meuser, Timo Koppe, Rhaban Hark, and Ralf
Steinmetz. User Plane Hardware Acceleration in Access Networks:
Experiences in Offloading Network Functions in Real 5G Deploy-
ments. In 55th Hawaii International Conference on System Sciences,
2022.

[19] Ralf Kundel, Leonhard Nobach, Jeremias Blendin, Wilfried Maas,
Andreas Zimber, HansâĂŘJoerg Kolbe, Georg Schyguda, Vladimir
Gurevich, Rhaban Hark, Boris Koldehofe, and Ralf Steinmetz.
Openbng: Central office network functions on programmable data
plane hardware. Int. J. Netw. Manag., 31(1), January 2021.

[20] David Lake, Ning Wang, Rahim Tafazolli, and Louis Samuel. Soft-
warization of 5G Networks âĂŞ Implications to Open Platforms and
Standardizations. IEEE Access, PP:1–1, 04 2021.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
https://www.cisco.com/c/en/us/products/collateral/se/internet-of-things/at-a-glance-c45-731471.pdf
http://fast.dpdk.org/doc/perf/DPDK_21_02_Intel_crypto_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_21_02_Intel_crypto_performance_report.pdf
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
https://www.xilinx.com/applications/data-center/network-acceleration/alveo-sn1000.html
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://www.dpdk.org
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf

[21] Yi-Bing Lin, Tse-Jui Huang, and Shi-Chun Tsai. Enhancing 5g/iot
transport security through content permutation. IEEE Access,
7:94293–94299, 2019.

[22] Robert MacDavid, Carmelo Cascone, Lin Pingping, Badhrinath Pad-
manabhan, Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz
Sunay. A P4-based 5G User Plane Function. In Symposium on SDN
Research (SOSR). ACM, 2021.

[23] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan,
Shuowei Jin, Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan
Yang, Zhuoqing Morley Mao, Feng Qian, and Zhi-Li Zhang. A
variegated look at 5g in the wild: Performance, power, and qoe
implications. In Proceedings of the 2021 ACM SIGCOMM 2021
Conference, SIGCOMM ’21, page 610âĂŞ625, New York, NY, USA,
2021. Association for Computing Machinery.

[24] Katayoun Neshatpour, Maria Malik, Mohammad Ali Ghodrat, Avesta
Sasan, and Houman Homayoun. Energy-efficient acceleration of big
data analytics applications using fpgas. In Proceedings of the 2015
IEEE International Conference on Big Data (Big Data), BIG DATA
’15, page 115âĂŞ123, USA, 2015. IEEE Computer Society.

[25] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio López-Buedo, and Andrew W. Moore. Understanding
pcie performance for end host networking. In Proceedings of the
2018 Conference of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’18, page 327âĂŞ341, New York, NY, USA,
2018. Association for Computing Machinery.

[26] Van-Giang Nguyen, Anna Brunstrom, Karl-Johan Grinnemo, and
Javid Taheri. Sdn/nfv-based mobile packet core network architectures:
A survey. IEEE Communications Surveys Tutorials, 19(3):1567–1602,
2017.

[27] ONF. Aether enterprise-5g/lte-edge-cloud-as-a-service. In Aether
White Paper, 2020.

[28] P4Rntime. A control plane specification for controlling the data plane
elements of a device or program defined by a p4 program.

[29] White Paper. Intel, kaloom create p4-programmable net-
work solutions, 2020. https://builders.intel.com/docs/networkbuilders/
intel-kaloom-create-p4-programmable-network-solutions.pdf.

[30] P Gyanesh Patra, Christian Esteve Rothenberg, and Gergely Pongrácz.
Macsad: Multi-architecture compiler system for abstract dataplanes
(aka partnering p4 with odp). SIGCOMM ’16, page 623âĂŞ624,
New York, NY, USA, 2016. Association for Computing Machinery.

[31] Zafar Ayyub Qazi, Melvin Walls, Aurojit Panda, Vyas Sekar, Sylvia
Ratnasamy, and Scott Shenker. A high performance packet core for
next generation cellular networks. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Communication,
SIGCOMM ’17, page 348âĂŞ361, New York, NY, USA, 2017.
Association for Computing Machinery.

[32] Ruben Ricart-Sanchez, Pedro Malagon, Jose M. Alcaraz-Calero, and
Qi Wang. P4-netfpga-based network slicing solution for 5g mec
architectures. In 2019 ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS), pages 1–2, 2019.

[33] Ruben Ricart-Sanchez, Pedro Malagon, Pablo Salva-Garcia, En-
rique Chirivella Perez, Qi Wang, and Jose M. Alcaraz Calero. To-
wards an fpga-accelerated programmable data path for edge-to-core
communications in 5g networks. Journal of Network and Computer
Applications, 124:80–93, 2018.

[34] Ruben RicartâĂŘSanchez, Pedro Malagon, Antonio Maten-
cioâĂŘEscolar, Jose M. Alcaraz Calero, and Qi Wang. Toward
hardwareâĂŘaccelerated qosâĂŘaware 5g network slicing based on
data plane programmability. Trans. Emerg. Telecommun. Technol.,
31(1), jan 2020.

[35] Jeferson Santiago da Silva, Thibaut Stimpfling, Thomas Luinaud,
Bachir Fradj, and Bochra Boughzala. One for all, all for one: A
heterogeneous data plane for flexible p4 processing. In 2018 IEEE
26th International Conference on Network Protocols (ICNP), pages
440–441, 2018.

[36] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulka-
rni. Turboepc: Leveraging dataplane programmability to accelerate
the mobile packet core. In Proceedings of the Symposium on SDN
Research, SOSR ’20, page 83âĂŞ95, New York, NY, USA, 2020.
Association for Computing Machinery.

[37] Harminder Singh, Changcheng Huang, Mathieu Sicard-Gagne, Gau-
ravdeep Shami, Marc Lyonnais, Dmitri Fedorov, and Rodney Wilson.
Int-sdn: Evaluation of various p4 parameters using optical telemetry
having reconfigurable data plane on 40 gbps line rate. In 2019 IEEE
Pacific Rim Conference on Communications, Computers and Signal
Processing (PACRIM), pages 1–6, 2019.

[38] Suneet Kumar Singh, Christian Rothenberg, Marcelo Caggiani
Luizelli, Gianni Antichi, and Gergely Pongracz. Revisiting heavy-
hitters: Don’t count packets, compute flow inter-packet metrics in the
data plane. In Proceedings of the SIGCOMM ’20 Poster and Demo
Sessions, SIGCOMM ’20, page 49âĂŞ51, New York, NY, USA, 2020.
Association for Computing Machinery.

[39] Suneet Kumar Singh, Christian Esteve Rothenberg, Gyanesh Patra,
and Gergely Pongracz. Offloading virtual evolved packet gateway
user plane functions to a programmable asic. In Proceedings of the
1st ACM CoNEXT Workshop on Emerging In-Network Computing
Paradigms, ENCP ’19, page 9âĂŞ14, New York, NY, USA, 2019.
Association for Computing Machinery.

[40] Stratum. An open source silicon-independent switch operating system
for software defined networks.

[41] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. Flightplan: Dataplane Disaggregation and Placement
for P4 Programs. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 571–592. USENIX
Association, April 2021.

[42] The P4 Source Code of IPG based Heavy-Hitter detection for Tofino.
[Available]:https://github.com/intrig-unicamp/P4-HH.

[43] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico,
Elerson R. S. Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M.
Vieira. Fast packet processing with ebpf and xdp: Concepts, code,
challenges, and applications. ACM Comput. Surv., 53(1), February
2020.

[44] Péter Vörös, Gergely Pongrácz, and Sándor Laki. Towards a hybrid
next generation nodeb. In Proceedings of the 3rd P4 Workshop
in Europe, EuroP4’20, page 56âĂŞ58, New York, NY, USA, 2020.
Association for Computing Machinery.

[45] PÃl’ter VÃűrÃűs, DÃąniel HorpÃącsi, RÃşbert Kitlei, DÃąniel
LeskÃş, MÃątÃl’ Tejfel, and SÃąndor Laki. T4p4s: A target-
independent compiler for protocol-independent packet processors.
In 2018 IEEE 19th International Conference on High Performance
Switching and Routing (HPSR), pages 1–8, 2018.

[46] Qi Wang, Jose Alcaraz-Calero, Ruben Ricart-Sanchez, Maria Barros
Weiss, Anastasius Gavras, Navid Nikaein, Xenofon Vasilakos, Bernini
Giacomo, Giardina Pietro, Mark Roddy, Michael Healy, Paul Walsh,
Thuy Truong, Zdravko Bozakov, Konstantinos Koutsopoulos, Pedro
Neves, Cristian Patachia-Sultanoiu, Marius Iordache, Elena Oproiu,
Imen Grida Ben Yahia, Ciriaco Angelo, Cosimo Zotti, Giuseppe
Celozzi, Donal Morris, Ricardo Figueiredo, Dean Lorenz, Salvatore
Spadaro, George Agapiou, Ana Aleixo, and Cipriano Lomba. Enable
advanced qos-aware network slicing in 5g networks for slice-based
media use cases. IEEE Transactions on Broadcasting, 65(2):444–453,
2019.

[47] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang
Zhou, Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic Sketch:
Adaptive and Fast Network-wide Measurements. In Special Interest
Group on Data Communication (SIGCOMM). ACM, 2018.

[48] Tong Yang, Haowei Zhang, Jinyang Li, Junzhi Gong, Steve Uh-
lig, Shigang Chen, and Xiaoming Li. HeavyKeeper: An Accurate
Algorithm for Finding Top-k Elephant Flows. In Transactions on
Networking, Volume:27, Issue:5. IEEE/ACM, 2019.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3201512

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Queen Mary University of London. Downloaded on October 19,2023 at 15:40:25 UTC from IEEE Xplore. Restrictions apply.

https://builders.intel.com/docs/networkbuilders/intel-kaloom-create-p4-programmable-network-solutions.pdf
https://builders.intel.com/docs/networkbuilders/intel-kaloom-create-p4-programmable-network-solutions.pdf
https://github.com/intrig-unicamp/P4-HH

	Introduction
	Background
	5G Network Architecture
	Programmable Data Planes

	Related Work
	Programmable Hardware Acceleration
	P4 Hybrid Datapaths

	P4 for 5G User Planes: Rationale, Challenges and Limitations
	P4 Implementation Challenges
	P4 Language Limitations for 5G support

	P4-based hybrid 5G UPF Pipelines
	UPF P4 Pipeline
	gNodeB User Plane
	General Architecture of Hybrid 5G Data Plane
	Hybrid-UPF using switch ASIC and x86
	Hybrid-UPF using SmartNIC and x86
	Hybrid-gNodeB Design and Implementation
	Buffer as a Service (BaaS)

	Experimental Evaluation
	Hybrid-UPF (Tofino + x86)
	Methodology
	Resource Utilization
	Scalability
	Performance
	Runtime Flow Classification and HW Offloading

	Hybrid-UPF (SmartNic + x86)
	Methodology
	Latency Performance
	Throughput Performance

	Use Case Scenarios
	UPF-QoS
	Hybrid-gNB buffering service
	Hybrid-gNB cryptographic service

	Conclusion and Future Work
	References

