
Offloading Virtual Network
Functions – Hierarchical
Approach

Jonatan Langlet

Faculty of Health, Science and Technology

Computer Science

Master’s Thesis, 30HP (ECTS)

Supervisor: Andreas Kassler

Examiner: Leonardo Martucci

Date: 150620

Preface

Dear reader,

The work presented in this thesis, Offloading Virtual Network Functions - Hierarchical

Approach, was originally planned to be but one component in a much more ambitious

project. A complete load balancing system was originally designed, which also included

instructions running on a programmable switch. The final result would be a dynamic load

balancing system performing 5G Core UPF functionality.

The goal was for multiple of these switches to work in parallel, each one responsible for

user plane processing of a subset of total traffic flowing through a 5G core network. These

switches could process some traffic themselves, and distribute the rest across multiple sub-

processors. Due to issues with the control plane installation for the switch, and the thesis

deadline approaching, I had no choice but to omit a lot of already completed work from

this thesis, seeing as they would be of no use without a working control plane.

What is presented in this thesis however is the design, implementation, and performance

of one of these network processor targets, planned to be deployed as a sub-processor under

one of these switches. This target is a hybrid system consisting of DPDK applications

running on an x86 server, and a programmable network card connected to the rest of the

5G core network. I want you, the reader, to keep this in mind when reading the rest of

this thesis.

I hope you find the work interesting,

Jonatan Langlet

i

Abstract

Next generation mobile networks are designed to run in a virtualized environment, enabling

rapid infrastructure deployment and high flexibility for coping with increasing traffic de-

mands and new service requirements. Such network function virtualization imposes addi-

tional packet latencies and potential bottlenecks not present in legacy network equipment

when run on dedicated hardware; such bottlenecks include PCIe transfer delays, virtualiza-

tion overhead, and utilizing commodity server hardware which is not optimized for packet

processing operations.

Through recent developments in P4 programmable networking devices, it is possible to

implement complex packet processing pipelines directly in the network data plane; allowing

critical traffic flows to be offloaded and flexibly hardware accelerated on new programmable

packet processing hardware, prior to entering the virtualized environment.

In this thesis, we design and implement a novel hybrid NFV processing architecture

which integrates programmable NICs and commodity server hardware, capable of offloading

virtual network functions for specified traffic flows directly to the server network card;

allowing these flows to completely bypass softwarization overhead, while less sensitive traffic

process on the underlying host server.

An evaluation in a testbed with customized traffic generators show that accelerated

flows have significantly lower jitter and latency, compared with flows processed on com-

modity server hardware. Our evaluation gives important insights into the designs of such

hardware accelerated virtual network deployments, showing that hybrid network architec-

tures are a viable solution for enabling infrastructure scalability without sacrificing critical

flow performance.

ii

Acknowledgements

First I would like to thank my advisor, Prof. Andreas Kassler, for his constant engagement

and for introducing me to the world of computer networking research.

Thanks to the entire computer science department at Karlstad University, it has truly been

a transformative time working with you.

Lastly, loving thanks to my partner Mikaela and our dog Cisco, for your never ending

support.

iii

Contents

1 Introduction 1

2 Background 3

2.1 Network Function Virtualization (NFV) 3

2.2 5G Core Network Architecture . 4

2.3 GPRS Tunneling Protocol (GTP) . 6

2.4 P4 Programming Language . 8

2.4.1 P4 Design Philosophy . 8

2.4.2 P4 Compatible Hardware . 11

2.4.3 Netronome SmartNIC . 11

2.4.4 T4P4S and DPDK . 12

3 Motivation 13

4 Design 15

4.1 Offloading Overview . 15

4.1.1 DPDK Without SmartNIC Offloading 16

4.1.2 Simple SmartNIC Offloading . 16

4.1.3 Offloading With Marked Fast Path to DPDK 17

4.2 vEPG Pipeline . 18

4.2.1 Parser . 19

4.2.2 Ingress . 19

4.2.3 Egress . 21

4.2.4 Deparser . 21

4.2.5 Encapsulation Action, and Optimization 22

4.2.6 SmartNIC Offloading Functionality 22

iv

5 Implementation and Methodology 23

5.1 Generating Test Cases . 23

5.1.1 Generating Packet Traces . 24

5.1.2 Generating Table Entries . 25

5.2 SmartNIC Setup . 27

5.3 DPDK Setup . 27

5.3.1 Multiple Cores . 28

5.3.2 T4P4S . 29

5.3.3 T4P4S Controller . 30

5.4 Testbed . 32

5.4.1 Traffic Generation - OSNT . 33

5.4.2 Management Server . 37

5.5 Maximum Capacity Definition . 38

6 Evaluation 38

6.1 T4P4S vEPG Performance Behind SmartNIC 39

6.1.1 Early Packet Loss . 40

6.1.2 Maximum Packet Rate . 43

6.2 T4P4S - Latency Imposed by SmartNIC Overhead 44

6.3 SmartNIC Performance . 45

6.3.1 Performance of LPM Table Matching 45

6.3.2 SmartNIC Stand Alone vEPG Performance 46

6.4 Hybrid Target vEPG Performance . 47

6.4.1 Offload Percentage Impact on Accelerated Traffic 47

6.4.2 Combined Aggregate Performance 48

7 Conclusion 50

References 52

v

A Appendix 55

A.1 T4P4S Incorrect Encapsulation . 55

A.2 Test Case Generating Code . 57

A.2.1 Packet Trace Generation . 57

A.3 Table Configuration Files . 59

A.3.1 Tofino . 59

A.3.2 Netronome . 60

A.3.3 T4P4S . 65

Acronyms 66

vi

List of Figures

2.1 5G Core Network Architecture overview - Showing separation of control-

and user plane components . 5

2.2 vEPG offloading explanation in LTE network, showing the GTP tunnel

between RAN (eNB) and vEPG . 6

2.3 GTP encapsulation process in EPG . 7

2.4 Overview of a P4 packet processing pipeline. Different P4 targets can have

their own variations on this pipeline structure, but always contain these

same basic components . 8

4.1 Different ways of performing vEPG functionality, with and without Smart-

NIC offloading . 16

4.2 A visualization of the vEPG P4 pipeline packet parser, as it was designed

for this project. This state machine is capable of parsing the complex header

structure of packets in the mobile packet core 20

5.1 Testbed design . 32

5.2 OSNT simplified explanation. Single TX to another RX port 33

5.3 OSNT replaying a pre-generated packet trace, containing four packets, three

times . 33

5.4 Structure of OSNT timestamp marker as written to packets 34

6.1 T4P4S performance while performing GTP encapsulation of 128B packets . 39

6.2 T4P4S loss rates while performing GTP encapsulation, 0% offloading, marker

enabled. Early packet loss before maximum capacity 41

6.3 T4P4S loss rates while performing GTP encapsulation behind SmartNIC,

0% offloading, marker enabled . 42

6.4 T4P4S performance while performing GTP encapsulation of 128B packets,

comparing sNIC impact on performance. sNIC offloading is disabled during

sNIC measurements. 1k mapped TEIDs 43

vii

6.5 Netronome latencies while mapping 100k TEIDs at 1Gbps. Impact of LPM

matching . 45

6.6 SmartNIC stand-alone performance while processing 128B packets 46

6.7 Netronome and T4P4S performance while sharing 10K TEID workload, with

marker approach for SmartNIC offloading 47

6.8 Latency comparison for packets encapsulated in T4P4S or Netronome. 128B

packets, in total 10k mapped TEIDs, marker offloading design 49

6.9 Netronome and T4P4S processing latencies while sharing 10K TEID com-

bined workload, with marker approach for SmartNIC offloading. Latency

CDF during 3000 KPPS 128B load with 50/50 offloading hybrid system . . 50

A.1 Packet dump after 50% workload sharing between SmartNIC and T4P4S-

T4P4S error detected . 55

A.2 Raw packet dump after encapsulation, where the header directly following

GTP is highlighted, showing inconsistencies between targets 55

A.3 T4P4S debug output during incorrect encapsulation - parser 56

A.4 T4P4S debug output during incorrect encapsulation - creating encapsulation

headers . 56

A.5 T4P4S debug output during incorrect encapsulation - deparser 57

viii

List of Tables

6.1 Maximum T4P4S packet rates while performing GTP encapsulations behind

SmartNIC, 0% offloading, marker enabled 42

6.2 Test parameters used to measure hybrid target performance while keeping

T4P4S at constant 1500 KPPS load . 48

ix

Listings

1 Snippet from SmartNIC ingress pipeline, offloading without marker 19

2 Snippet from flows.json file, used to ensure flow consistency across tests. All

generated traffic flows and table rules are based on the values in this file . 24

3 Kernel boot parameters optimized for this DPDK installation 28

4 Snippet from T4P4S profile configuration file 29

5 Snippet from the T4P4S configuration, showing some aliases created for this

project . 29

6 T4P4S port forwarding table configuration file, forwarding all packets re-

ceived through port 0 to port 1 . 31

7 Snippet from T4P4S IP firewall table configuration file 31

8 Snippet from T4P4S GTP encapsulation table configuration file, showing

generated IP/TEID mappings . 32

9 Snippet from Tofino table configuration JSON, showing a single rule for

vEPG DL table . 59

10 Snippet from Netronome table configuration JSON, showing configuration

for dmac table . 60

11 Snippet from Netronome table configuration JSON, showing configuration

for dmac table . 60

12 Snippet from Netronome table configuration JSON, showing configuration

for firewall DL table . 61

13 Snippet from Netronome table configuration JSON, showing configuration

for firewall UL table . 62

14 Snippet from Netronome table configuration JSON, showing configuration

for smac table . 62

15 Snippet from Netronome table configuration JSON, showing configuration

for vEPG UL table . 63

x

16 Snippet from Netronome table configuration JSON, showing configuration

for vEPG DL table with just two TEID mappings 63

17 Complete T4P4S vEPG DL configuration file, for test case with just two

TEID mappings . 65

xi

1 Introduction

With Fifth Generation mobile networks (5G) on the horizon, Network Function Virtual-

ization (NFV) has become an important tool that operators use to ensure that their in-

frastructure is able to scale alongside increased traffic demands [1]. In NFV environments,

core network functionality is not delivered by legacy hardware, the virtualized network

services are instead deployed as containers on commodity hardware.

Although migrating packet processing functionality to a NFV environment has clear

benefits in terms of flexibility, it also comes with virtualization overhead and potential

bottlenecks not present in legacy hardware; e.g. network driver inefficiencies [16], PCIe bus

transfers [26], software switch performance limitations [20], and simply network functions

executing on unoptimized commodity hardware[19].

A vision for future mobile networks is to have a broader impact than simply increased

network speeds. One example is in health care, where some medical vehicles could be

equipped with a remote-surgery station, allowing a surgeon to perform life-saving surgery

immediately upon vehicle arrival [34].

These so called Ultra-Reliable and Low-Latency Communication (URLLC) scenarios

require incredibly reliable mobile network connections, and a low perceived delay for the

surgeon controlling the equipment remotely [15]. Allowing URLLC flows to be processed

on more optimized systems than an NFV deployment is important for the flexibility of

these new mobile networks, enabling accelerated processing of time-sensitive traffic.

One such Virtual Network Function (VNF), running in NFV environments, is GPRS

Tunneling Protocol (GTP) encapsulation, which is a protocol allowing devices to move

freely from one mobile network base station to another without interrupting ongoing con-

nections for that device. GTP encapsulation is performed on every packet sent to the

mobile device, resulting in increased traffic delays.

Recent developments in programmable network appliances make it possible to deploy

complex functionality in hardware specialized at processing network traffic; one exam-

1

ple of such programmable network equipment are SmartNIC (sNIC)s, which are P4 pro-

grammable Network Interface Card (NIC)s; P4 being a language designed solely for creating

packet processing pipelines for deployment in network data plane equipment [4].

The objective of this thesis is to investigate the use of programmable network cards

for accelerating time-sensitive traffic flows. This thesis aims to answer the question of

how much packet processing latency can be reduced by offloading the packet processing to

different programmable targets, and find the impact of processing complexity and lookup

size on the acceleration targets.

By deploying VNF offloading P4 pipelines to the sNICs attached to these VNF host-

ing servers, one might assign certain time-sensitive traffic flows for processing directly on

the sNIC; thereby allowing these critical traffic flows to completely bypass the overhead

imposed by the NFV environment, while at the same time letting less critical traffic to

continue down to the server for processing in the NFV environment as usual.

Equivalent P4 pipelines for processing GTP tunneling together with basic layer 3 fire-

wall functionality has been designed and implemented on a programmable sNIC, and as

a Data Plane Development Kit (DPDK) instance running on commodity server hardware

used as a placeholder for a more complex NFV environment. The work presented in this

thesis is a hybrid system with support for processing a subset of all mobile traffic flows on a

server processor, while offloading other flows to the programmable sNIC. There are multi-

ple benefits to this approach, including packets skipping the 900ns delay[26] imposed by its

transfer through the PCIe to Central Processing Unit (CPU), and utilizing an architecture

optimized for processing network traffic.

In this proof-of-concept implementation, flows that are processed directly on the sNIC

measured approximately half as high processing latency compared to traffic processed on

the equivalent DPDK pipeline running on host CPU; sNIC offloaded traffic also measured

a significantly reduced latency jitter compared with non-offloaded traffic. Latencies for

packets accelerated by the sNIC were in the 10us−24us range depending on test scenario,

2

while non-accelerated traffic processed on CPU measured in the 20us− 45us range.

The remainder of this thesis is structured as follows. Essential background knowledge

is presented in section 2, starting with an overview of network function virtualization in

2.1, followed by the 5G Core Network (5GC) architecture in 2.2, GTP encapsulation in 2.3,

and lastly P4 programmability in 2.4. How this work fits in the current state of research

is explained in section 3. An explanation of the sNIC offloading solution is presented

in section 4, where different offloading approaches are discussed. Final proof-of-concept

implementation and test bed setup is described in section 5. Both individual processors,

and the combined hybrid performance is presented in section 6, with a summary conclusion

in section 7.

2 Background

2.1 Network Function Virtualization (NFV)

NFV is a concept that virtualizes entire network nodes, making these run as virtual ma-

chines - or containers - on commodity server hardware [6]. These nodes can be virtually

connected together to deliver some specific network function. A VNF may run on one or

more of these virtualized network nodes, delivering some network function without requir-

ing specialized hardware designed specifically for this purpose.

NFV has reduced initial costs and simplified deployment of new network functions by

running these on commodity server hardware [18]; virtualization has also improved the

flexibility of deployments immensely [18].

There are however drawbacks to the NFV flexibility benefit though; NFV designs im-

pose virtualization overhead, and is dependent on hardware which is not optimized for

packet processing operations. Due to the non-deterministic behavior of x86 software stacks,

they can not always guarantee strict latency requirements [28]. Multiple potential bottle-

necks exist in NFV environments which are not present in legacy hardware, including

3

transmission through the PCIe bus [26], inefficient network drivers [16], software switch

performance [20], and the actual VNF executing on commodity servers which are not

optimized for these specific packet processing operations [19].

Different network traffic types place their own requirements on the underlying network,

e.g. video streaming does not necessarily require low latency, but do need a high data

rate to ensure high quality streaming. However, for some kinds of augmented reality and

remote surgery, ensuring a low packet latency is essential [15]; for these kinds of traffic, a

hardware accelerated approach could be beneficial.

Even the most cutting edge virtualized environments struggle to deliver packet latencies

as low as specialized hardware, as seen in a paper by Intel, where they manage a packet

latency of 70µs for 5G User Plane Function (UPF) functionality running in a virtualized

environment [9].

Thanks to new advances in P4 programmable data planes, some network devices can

be extended to perform complex VNF functions themselves. In a paper by Singh et al,

a high-end programmable switch can perform Virtual Evolved Packet Gateway (vEPG)

functionality while delivering packet latencies as low as 2µs [31], thereby presenting a

possible optimization for 5GC deployments.

2.2 5G Core Network Architecture

5GC is the next generation mobile network architecture, designed to replace the old Long-

Term Evolution (LTE) Evolved Packet Core (EPC). With 5G on the horizon, promising

lowered packet latencies and higher throughput [32] compared to LTE, making it a very

active field of research at the time of writing.

A central concept in the 5GC design is Control and User Plane Separation (CUPS)

[29]. The control plane is responsible for signaling in a network, e.g. power management

and attaching mobile devices, while the user plane is responsible for handling the actual

user traffic passing trough the mobile network. As seen in figure 2.1, there is a very clear

4

Control Plane

UPF

SMF

RAN
(Radio Access Network)

AMF

UE

Data Network
(Internet)

NSSF NEF NRF PCF UDM AF

AUSF

Figure 2.1: 5G Core Network Architecture overview - Showing separation of control- and
user plane components

separation between the control- and user plane in the 5GC architecture. All control plane

modules are also designed to be distinct, which means that they could easily be deployed

as separate virtualized containers.

Since the 5GC architecture is designed for a virtualized environment [29], network

slicing [11] is greatly simplified. Network slicing is a technique where multiple virtualized

core networks can run in parallel; each slice is a complete core network with its own

control- and user plane functionality. These slices can have their own network capabilities

and services, and thus have their own specializations; some slices might be optimized for

a high bit rate, sacrificing latencies to achieve this, while other slices aim to deliver low

latencies and high reliability. One such traffic scenario is URLLC [12], which are traffic

flows requiring low delays and high reliability, and is the case for certain augmented reality

applications, remote surgery, robotics, etc. Mobile user equipment requiring these network

properties can then be attached to a network slice which is optimized for processing URLLC

flows.

To help operators implement network slicing technology, the 5GC architecture has

been significantly revamped since its LTE predecessor. What in LTE is called Serving

Gateway (S-GW) and Packet Data Network Gateway (P-GW) has in 5G been replaced

5

Figure 2.2: vEPG offloading explanation in LTE network, showing the GTP tunnel between
RAN (eNB) and vEPG

by the UPF[7]. The UPF is responsible for facilitating user-plane functionality to the

5GC, including access control, bearer lookup, service data flow (SDF) mapping, per-flow

QoS, guaranteed bit rate, maximum bit rate (MBR), charging, packet forwarding, and GTP

encapsulation[9]. Because of CUPS, and since all user plane functionality has been merged

into a single user plane module, the UPF is also designed for a virtualized environment[30].

When the user plane load increases in the packet core, more UPF VNFs can immediately

be deployed to offload the current system, thereby allowing the 5GC to scale alongside

increased network traffic demands.

2.3 GPRS Tunneling Protocol (GTP)

An example of a network function which might benefit from hardware acceleration is GTP

encapsulation in the 5GC, since these operations are affected by the NFV bottlenecks as

explained earlier in section 2.1.

vEPG is a variant of Evolved Packet Gateway (EPG), which is performing various

network functions in the EPC, including GTP user plane processing and basic firewall

functionality. A paper by Singh et al. [31] evaluated the benefit of offloading vEPG

6

vEPG-DL
table

Ethernet
<ethernet>

IPv4
<ipv4>
UDP
<udp>
VXLAN
<vxlan>
Ethernet

<inner_ethernet>

IPv4
<inner_ipv4>

TCP
<inner_tcp>

Payload

Ethernet
<ethernet>

IPv4
<ipv4>
UDP
<udp>
VXLAN
<vxlan>
Ethernet

<inner_ethernet>
IPv4

<inner_ipv4>

TCP
<inner1_tcp>

Payload

UDP
<inner_udp>

GTP
<gtp>
IPv4

<inner1_ipv4>

Encapsulation

Lookup
TEID

Downlink
Ingress

Downlink
Egress

Figure 2.3: GTP encapsulation process in EPG

functionality to a programmable packet switching Application Specific Integrated Circuit

(ASIC), more specifically a Barefoot Tofino.

Singh’s paper presents a decent visualization of where the GTP tunneling occurs in the

LTE EPC ; see figure 2.2, where the Data Center Gateway (DCGW) on the left is to the

Radio Access Network (RAN) where the E-UTRAN Node B (eNodeB) will send the packet

to the mobile device, and towards the Internet on the right.

In (a), both the vEPG controller- and data plane instances are running as VNFs on

commodity x86 server hardware, and a server CPU is responsible for all network processing.

In (b) however, the whole data plane instance has been offloaded into the Tofino Top-of-

Rack (ToR) switch, leaving just the controller VNF on server CPU.

GTP tunneling is responsible for ensuring packets coming from the Internet are routed

to the correct mobile base station, to which the destination mobile device is currently

attached. GTP tunneling allows for mobile devices to move from one base station to

7

Match Action

Match Action

Match Action

Match Action

Match Action

M/A Table

Ingress

M/A Table
Match Action

Match Action

Match Action

Match Action

Match Action

Buffer

Match Action

Match Action

Match Action

Match Action

Match Action

Egress

M/A Table M/A Table
Match Action

Match Action

Match Action

Match Action

Match Action

Parser

H1

H3

H2

H5 H6

H4

Parser

H1

H3

H2

H5 H6

H4

Deparser Deparser

Figure 2.4: Overview of a P4 packet processing pipeline. Different P4 targets can have their
own variations on this pipeline structure, but always contain these same basic components

another, without breaking currently ongoing internet connections. To achieve this, a Tunnel

Endpoint Identifier (TEID) is inserted in the GTP header, and kept updated by the core

network controller; these TEIDs are unique integers used to identify a tunnel between

endpoints as shown in figure 2.3. Seeing as there can be millions of user tunnels in the

same core network, this requires extensive lookup tables to store all IP/TEID mappings.

In modern mobile packet core networks, GTP encapsulation and firewall functionality

is performed on commodity x86 servers in an NFV environment, as is the case with vEPG

[31].

2.4 P4 Programming Language

P4 is a programming language designed exclusively for data plane programming. The idea

was first published as a SIGCOMM paper in 2014 [4], and has since then grown into the

de-facto standard language used for data plane programming.

2.4.1 P4 Design Philosophy

The P4 programming language is used to describe real-time packet processing pipelines

targeting very diverse hardware, including Field-Programmable Gate Array (FPGA)s [21],

commodity servers [33], NICs [22], and ASICs [25]; a lot of standard components typically

8

included in imperative programming languages are therefore omitted from P4 - includ-

ing all loops, division and modulo operations, floating-point calculations, dynamic memory

allocation, recursion, etc.

Packets processed by a P4 program always enter at the same place, namely the Parser.

The parser is a fully programmable finite state machine, responsible for parsing the packet

headers. In each parser state, a header can be extracted; state transitions can be chosen

based on header values parsed earlier, and can therefore ensure correct parsing of subse-

quent headers in the packet. For example, the Ethernet header can be the first parsed

header, and based on the EtherType field, the parser can transition to a state responsible

for parsing the Internet Protocol (IP) header, Address Resolution Protocol (ARP) header,

etc. Only header values extracted during this parser are available for use further down in

the P4 pipeline.

When parsing is finished, packets enter a match-action part of the Ingress block, where

most of the processing logic occurs. The main idea of P4 match-action processing is to

execute specific actions based on entries in lookup tables. These match-action tables are

populated by the control plane with key values with which packets will attempt to match

against. Upon successful match against a table entry, a specified action is triggered along

with input parameters specific for the rule which was matched against. These actions

typically work like functions in traditional imperative programming languages, and can be

thought of as such.

After the match-action pipeline is applied, the packet reaches the deparser. In here,

headers and payload are stitched back together in a pre-defined order ready for emission.

The ingress pipeline is followed by an egress pipeline, which follows the same design phi-

losophy as the ingress pipeline. The ingress- and egress pipelines are often programmed

to perform different sets of instructions, and the ingress pipeline can even instruct certain

packets to completely bypass the egress pipeline. This can be useful in cases where only

some packets require further processing, which then will be placed in the egress block.

9

Different P4 programmable hardware can have their own variations of this basic P4

pipeline structure, where some targets might place an extra deparser and parser stage

in between ingress and egress as in figure 2.4; others might go directly from the ingress

match-action pipeline to egress, barely distinguishing between the two.

P4 does not support any complex data types. Instead, developers explicitly specify

the bit-length, and can use basic integer and bitwise operations for processing the stored

values.

There are a few options for data storage in P4 programs, including the ones mentioned

below.

Metadata is very similar to local variables in traditional languages. These are used to

store temporary values during a single packet processing, and can not be used for

persistent storage.

Registers are used to store data persistently across packets, and are therefore useful

while developing stateful P4 programs. Registers are arrays, and the developer must

specify how many register instances should be allocated during compile-time. These

registers are not 100% standardized in P4. P4 target architectures are diverse, and

it is difficult to define a method of persistent storage which is guaranteed to work

on all hardware. For example, some hardware targets place limitations on how often

and in what way these registers can be accessed.

Counters are bound to tables, and increment every time a specified action is triggered.

These are simple persistent storage components, and can be useful in cases where the

program is dependent on the knowledge of how many times an action has occurred.

Meters are complex components used for keeping statistics, often related to packet- or

bit rates. These components can return either green, yellow, or red depending on

the rate with which they have been triggered during some interval; the thresholds

required meters to report any specific color is specified by the controller.

10

2.4.2 P4 Compatible Hardware

Even though the P4 language is still in it’s early stages, there are already multiple producers

of P4 programmable network hardware.

Barefoot Networks is perhaps the biggest actor in this field, being the creators of the P4

programmable packet switching ASIC called Tofino[25]. Tofino is an incredibly powerful

P4 compatible switch, able to process network traffic at speeds up to 6.5Tbps.

Another big producer of P4 programmable hardware is Netronome, who focus on de-

veloping sNICs [22]; which are relatively inexpensive P4 programmable NICs.

2.4.3 Netronome SmartNIC

Typically, NICs are fixed-function devices hard-wired to perform a simple forwarding func-

tion, providing an interface between a computer and an external network. Netronome

Agilio CX is a series of fully programmable devices, developed by Netronome[24], built

around their Network Flow Processor (NFP) architecture.

A high level of parallel processing is at the base of this hardware architecture, designed

to achieve a high packet processing performance[23]. This flow processor architecture

is based around multiple processing cores, called workers. There are 60 flow processing

workers, each one clocked at 633MHz shared by eight threads; all threads are executing

the same packet processing program. These workers are clustered together into multiple

worker islands specialized for certain packet processing operations.

Worker islands all have their own sets of memory regions, and this architecture uses a

spillover technique while allocating memory, i.e. the fastest memory regions are prioritized

while allocating memory, and when these fill up, new allocations are ’spilled over’ into

slower, but larger, regions.

Netronome sNICs are programmable in a language called Micro-C, which is a stripped

down version of C designed to run in a real-time environment with additional limitations

not present in a traditional CPU environment. Micro-C is completely lacking in dynamic

11

memory, requiring all memory allocations to be known at compile-time, and due to the

lack of stack memory does not support recursion. On top of this, there is also no inher-

ent support of floating point calculations, and all but the most basic C libraries are not

included.

Netronome does provide a P4 compiler, which converts a P4 program into an equivalent

Micro-C code. The generated Micro-C code is then compiled into the firmware binaries

loaded onto the sNIC device. Because the building process is done step-by-step, it is

possible to modify the generated Micro-C code before its compilation if very low-level

modifications to the sNIC firmware is desired. An example of such a modification is briefly

discussed in section 6.2.

Through Single-Root Input/Output Virtualization (SR-IOV), it is possible for user

space applications running on the underlying host to directly receive network traffic from

the network card, completely bypassing the inefficient kernel space. When a NFP sNIC

is installed in a motherboard with SR-IOV support, the P4 pipeline running on the sNIC

can perform packet processing and afterwards forward packets through Virtual Function

(VF) ports down to host, where a user space application is ready to receive it.

2.4.4 T4P4S and DPDK

DPDK is a set of data plane libraries and drivers which enables advanced data plane func-

tionality to be performed on traditional Linux servers [14]; such data plane functionality

includes GTP processing nodes, packet filtering firewalls, and virtual network switches.

Network traffic coming through the NIC is usually handled by kernel space, which is an

inefficient interrupt-driven environment; each packet processed by the kernel space would

throw an interrupt, telling the CPU to perform a context switch and immediately process

this incoming request.

What DPDK does instead is allowing incoming network packets to completely bypass

the kernel space, through the use of a Poll Mode Driver (PMD) which access the Receive

12

(RX) and Transmit (TX)-queues of the NIC directly; resulting in greatly improved packet

processing performance, by keeping all packet processing in the user space without imposed

kernel overhead.

Traffic coming from the NIC is distributed through a Receive-Side Scaling (RSS) hash

function to one of the RX-queues. Each one of these RX-queues only support a single core

to poll packets; each core can be instructed to poll packet from any number of queues, as

long as it does not share an RX-queue with another core. Because of this, the number of

supported RX-queues places a limitation on the maximum number of cores DPDK can use

for processing network traffic.

T4P4S is a P4 compiler for DPDK, making it possible to run P4 applications in a DPDK

environment [33]. Setting up a T4P4S application requires both P4 code for compilation,

and a set of configuration options - which includes specifying numbers of RX-/TX-queues,

and number of cores together with a mapping between these queues and cores as described

earlier.

T4P4S applications also require matching control plane instances, responsible for con-

trol plane functionality. Controllers in T4P4S handle rule insertions and updates in match-

action tables, modifying register values, configuring meters, etc. These control plane ap-

plications are written in C, made specifically for the T4P4S application it is responsible

for.

3 Motivation

In a multi-year long study by Lévai et al., published in 2018, they dive into the price

of including programmability in the software data plane [17]. Traditionally, networks are

entirely built around fixed-function devices, where the functionality is hard-wired into the

hardware. This has resulted in very good processing performance, but greatly limits what

can be done in the network data plane. For example, they argue that a pure fixed-function

13

network makes it very difficult to support the next-generation 5G mobile infrastructure.

Although, enabling more programmability in the data plane comes at a cost both in terms

of forwarding performance and hardware expenses. Lévai et al. came to the conclusion

that current programmable networks struggle to scale to the same load as traditional

fixed-function hardware devices, and call for further research into scalable programmable

networks.

In 2018, Neugebauer et al. measured the PCIe impact on network performance [26].

During their tests, they found an imposed additional packet latency of 900ns for passing

128B packets through the PCIe down to the host. Offloading processing of these packets

to the NIC would entirely eliminate the need for this PCIe transfer, and thereby reducing

the overall latency for offloaded traffic.

Fortunately, allocating traffic flows to different processors, according to the specific

needs of each flow, has been a topic of research for multiple years. Abdelwahab et al.

published a paper in 2016 where they discussed the idea of deploying highly deterministic

and specialized hardware at the network edge, responsible for handling flows requiring these

specific network properties [1]. A system capable of processing some traffic flows before

even reaching the NFV environment could be used to improve the network performance

for these time sensitive communications.

In an effort to improve on the issues presented above, this thesis will focus on enhanc-

ing the scalability of programmable data planes, and deployment of efficient VNFs, by

offloading these operations from servers onto programmable NICs. These networks cards

are designed with a high level of parallelization, which is lacking in traditional x86 archi-

tectures. Currently, VNF operations are performed in virtualized containers on traditional

x86 servers, with network packets passing through a traditional non-programmable NIC. If

these NICs are made programmable, a subset of network traffic could be offloaded directly

to the NIC without having to pass by the underlying host server.

In this thesis, packet processing pipelines have been developed and deployed into a sys-

14

tem as described above. This thesis is evaluating the performance gain for offloading GTP

encapsulation together with layer 3 firewall functionality, which are both functionalities

included in modern mobile packet core networks, onto programmable NICs.

4 Design

A hybrid packet processing system pipeline has been designed, which enables offloading of

GTP encapsulation and basic layer 3 firewall functionality onto a programmable sNIC, as

seen in figure 4.1.

Equivalent pipelines have been created for an x86 packet processor, and a programmable

sNIC attached to that packet processing server. The NFP architecture on the sNIC is based

on a higher level of parallelization than the server, with 60x633MHz packet processing

workers compared to the 10x2.2GHz CPU cores running on the host; it might therefore

be reasonable to assume that the sNIC, optimized for the parallelizable nature of network

packet processing, could deliver reduced latency jitter compared to the CPU.

The following sections will describe the hybrid pipeline, designed to offload a subset of

total network traffic for sNIC acceleration; thereby attempting to reduce latency and jitter

for these traffic flows.

4.1 Offloading Overview

There are numerous design possibilities for offloading VNFs, and this section will focus on

offloading vEPG functionality as briefly explained earlier in section 2.3.

In figure 4.1, three different solutions are presented. The left-most scenario, without

offloading, is explained in section 4.1.1; section 4.1.2 explains the middle approach, where

a simple sNIC pipeline could be used to offload the DPDK; while section 4.1.3 explains the

right-most offloading approach, made possible by coordinating with a traffic load balancer.

15

Host

NIC

DPDK

P0 P1

vEPG

RX TX

PF PF

(a) Only DPDK, without of-
floading

Host

SmartNIC

M
at
ch

PF VF VF VF VF
Miss

DPDK

P0 P1

vEPG

RX TX

vEPGHit

(b) DPDK, offloaded by Smart-
NIC pipeline

Host

SmartNIC

vEPG

PF VF VF VF VF

DPDK

P0 P1

vEPG

RX TX

Read
mark 0

1

(c) DPDK, offloaded by en-
hanced SmartNIC pipeline

Figure 4.1: Different ways of performing vEPG functionality, with and without SmartNIC
offloading

4.1.1 DPDK Without SmartNIC Offloading

DPDK instances are typically bound behind traditional fixed-function NICs, which are

not programmable. In these cases, there are no possibilities to use the NIC for offloading

complex network operations. Instead, the NIC is simply an interface between a computer’s

internal software, and traffic on the network medium. In this scenario, DPDK is bound

directly to the Physical Function (PF) ports of the NIC, and has full responsibility for

processing all traffic sent to that specific NIC. Figure 4.1a shows a visualization of this

scenario.

4.1.2 Simple SmartNIC Offloading

Thanks to P4 programmable NICs, called sNICs, a relatively simple pipeline can be de-

ployed on the NIC to offload DPDK, and therefore reducing load on the host system.

If DPDK is bound to SR-IOV interfaces for the sNIC, the P4 pipelines running on these

two devices could be made to work together. Using GTP encapsulation as an example,

the total number of mapped TEIDs could be split so that each target is only responsible

for a subset of total encapsulations. The sNIC pipeline can be designed with an equivalent

16

encapsulation table to the DPDK, and only forward packets to DPDK if the tunnel is not

found in the sNIC table instance.

When a packet enters the sNIC, a table lookup is first performed in the sNIC instance

of the GTP encapsulation table. If there is a miss, the packet is forwarded through SR-IOV

to the host, where DPDK is bound to the VF ports and continues processing of this packet.

Assuming the tables in DPDK and sNIC are populated so that their union is equal to the

full set of TEIDs, this packet will successfully find an entry in the DPDK table, and GTP

encapsulation will be performed by the DPDK process. However, if the control plane had

created an entry for the packet in the sNIC table instance, encapsulation would have been

performed directly in the NIC, and thereby completely bypassing the host machine and its

inefficiencies as explained in section 2.1. This approach is visualized in figure 4.1b

4.1.3 Offloading With Marked Fast Path to DPDK

For the packets which only have a table entry in DPDK, attempting to match against the

GTP table in the sNIC is a suboptimal solution, resulting in unnecessary table lookups.

If it is assumed that some load balancing device has already forwarded the packet to this

specific destination, one might also expect this load balancer to be capable of marking the

chosen destination into the packet during load balancing.

Figure 4.1c shows how this marker could be used to bypass the sNIC table, instead

using the parsed marker to beforehand know which target will perform the encapsulation.

If a table entry for the packet currently in the pipeline has not been installed in the

sNIC table instance, attempting to match against this entry would result in a table miss. If

instead this marker already explicitly mentions a different target than the sNIC, the table

could be completely bypassed. Instead, the parsed marked value can be used to forward

the packet down the hierarchy to the correct encapsulation device, which would be DPDK

in this case. However, if this marker specifies the sNIC as encapsulation target, an entry

for this packet should have been written to the table, and a lookup is performed directly

17

in the sNIC pipeline.

These packets could be marked using a Network Service Header (NSH) [27], which is

used to ensure that packets are routed through a specified sequence of service nodes. In

this case, the vEPG processing target would be encoded in NSH, and if the target parses

its own ID in this header, it knows that an entry for this packet should be present in the

encapsulation table.

Due to this work only being a proof-of-concept implementation, the marker is instead

encoded into the IPv4 Identification field, containing a 16-bit value used for IP fragmen-

tation which never occurs during these experiments. The goal here is to evaluate the

performance impact of a marker which explicitly specifies its vEPG processing target to

be used for bypassing unnecessary table lookups, and encoding this marker here works as

a proof of concept.

Having the target marked in the packet also enables more complex hybrid system

designs. In the design presented in this thesis, packets which are not processed in the sNIC

are always sent through the same VF-port where DPDK is bound; a marker design could

instead specify which exact host service should continue processing, by having specific

packet processing services bound to their own sNIC VF-ports.

4.2 vEPG Pipeline

All targets are executing equivalent mobile packet core UPF pipelines, focused on process-

ing downlink traffic coming from data center gateway router on its way to the correct base

station where the mobile device is attached; supporting GTP encapsulation and decapsu-

lation, together with simple layer 3 firewall functionality. This firewall can be instructed to

drop packets based on exact-match of the inner ip header destination address. These two

combined functionalities, i.e. layer 3 firewall and GTP processing, will here be referred to

as vEPG functionality.

18

1 if(standard_metadata.ingress_port == 0) //If this packet is from traffic generator

2 {

3 smac.apply();

4 dmac.apply();

5 if(hdr.ipv4.isValid())

6 if (hdr.gtp.isValid())

7 {

8 firewall_UL.apply();

9 vEPG_UL.apply(); //GTP decapsulation.

10 }

11 else

12 {

13 firewall_DL.apply();

14 vEPG_DL.apply(); //GTP encapsulation. Default: send to host. On hit: send to TG

15 }

16 }

17 else //If pkt from not from TG, assume from host

18 send_to_tg(); //Forward packet to traffic generator

Listing 1: Snippet from SmartNIC ingress pipeline, offloading without marker

4.2.1 Parser

As mentioned previously in section 2.4, all packets start their processing in the packet

parser, where header values are extracted for use further down in the processing pipeline.

Due to the complex structures of packets passing through the packet core, the parser re-

quires a relatively high complexity to support parsing of these packets. Figure 4.2 visualizes

the parser as designed and implemented for these tests.

4.2.2 Ingress

In this implementation, most of the functionality is placed in the ingress pipeline. A code

snippet from the ingress pipeline running on the offloading sNIC without marker handling

is presented in listing 1, used for the offloading approach mentioned in section 4.1.2.

Layer 2 tables are the first to be applied, which are the smac and dmac tables; smac

can be used for Medium Access Control (MAC) learning, and dmac is used to whitelist

destination MAC addresses. For these tests, MAC learning is not required since the for-

19

YES/NO set
during compile

YesNo
OSNT

prepended
header

Incoming

No

Yes
etherType

==
IPv4

Yes

No

etherType
==

ARP

Parse:
<ethernet>

Parse:
<osnt>

Parse:
<ipv4>

Parse:
<arp>

Accept No

Yes

hType,pType
==

(eth,ipv4)

Parse:
<arp_ipv4>

No

Yes
proto

==
UDP

No

Yes
proto
==

ICMP

Accept

Parse:
<udp>

Parse:
<icmp>

Yes

dstPort
==

VxLAN

No

Parse:
<vxlan>

Parse:
<inner_ethernet>

Yes

etherType
==

IPv4

Accept

No

Parse:
<inner_ipv4>

Yes

No

proto
==

TCP

Parse:
<inner_tcp>

Yes

No

proto
==

UDP

Parse:
<inner_udp>

AcceptNoYes
port
==

GTP

Parse:
<gtp>

Parse:
<inner1_ipv4>

Yes

No

proto
==

TCP

Parse:
<inner1_tcp>

Figure 4.2: A visualization of the vEPG P4 pipeline packet parser, as it was designed for
this project. This state machine is capable of parsing the complex header structure of
packets in the mobile packet core

20

warding rules are hard coded as shown in figure 4.1, and the MAC learning action triggered

from the smac table is therefore not filling any function. To keep the pipeline functionally

close to an actual packet core UPF, both layer 2 tables are still present.

For layer 3 processing to be performed at all, a single conditional verifies that the ipv4

header was parsed. Packets are processed by the uplink branches, i.e. deparsed, if the

GTP header was parsed; if a GTP header was not parsed they are processed as downlink

packets, and are encapsulated. Both the uplink- and downlink branches contain layer 3

firewalls, which can instruct the device to drop traffic based on addresses in the inner ip

header.

4.2.3 Egress

In this GTP processing implementation, no functionality had to be placed in the egress

pipeline. Both targets (T4P4S and sNIC) share resources across ingress and egress, which

means that leaving this block empty should not have a noticeable impact on the system

performance.

Load balancing functionality could be placed in the sNIC egress block for traffic distri-

bution across host processes, as explained in section 5.3.1; which would include calculating

a hash based on parsed packet header values, and mapping the resulting hash to specific

virtual ports towards the host. However, the design implemented here does not include

this functionality.

4.2.4 Deparser

As mentioned earlier, the deparser is responsible for emitting headers in a pre-defined order,

will only emit headers which are set as valid during either the parser or ingress pipeline.

21

4.2.5 Encapsulation Action, and Optimization

During the later part of the project, an optimized encapsulation action was designed. The

old encapsulation action worked as follows:

1. Copying inner TCP and inner IP header values into metadata

2. Setting inner TCP header invalid, preventing header from emitting in deparser

3. Setting inner UDP, GTP, inner1 IP, and inner1 TCP headers as valid, making them

emit in deparser

4. Populating inner TCP and inner IP headers with values stored in metadata

5. Populating GTP header using hard-coded constants, and the TEID retrieved from

match-action table

6. Updating ethernet, IP, UDP, inner ethernet, inner IP, and inner UDP using con-

stants

The optimized encapsulation action completely bypasses metadata by instead copying

inner TCP and inner IP directly into the headers below GTP encapsulation. This opti-

mized solution was then ported to both targets, since both have been confirmed to support

direct cloning of entire parsed headers.

4.2.6 SmartNIC Offloading Functionality

In the Netronome sNIC ingress pipeline, there is a small addition to enable forwarding of

some packets to the host CPU. There are two design approaches evaluated in this thesis,

which are both explained previously in section 4.1.

The simple approach described in section 4.1.2 is implemented by modifying the sNIC

GTP encapsulation table, making the default action in that table forward packets to the

host.

22

In the marker offloading approach from section 4.1.3, a simple conditional statement

is included in the ingress pipeline, comparing the parsed marker value against a constant

defined while compiling firmware for the targets. The sNIC downlink branch is only applied

if this parsed marked value is equal to the constant, as defined at compile-time and encoded

in certain packets where sNIC acceleration shall be performed. Only packets with a marker

value not matching the sNIC constant will continue down to the host for non-accelerated

processing.

5 Implementation and Methodology

This project has been predominantly practical in nature, requiring installation, configu-

ration, and management of multiple software as well as hardware systems. Due to this,

setting up the test environment has without question been the most time consuming part

of the project. 1

5.1 Generating Test Cases

For testing the performance of the hybrid target, packet traces together with matching

table entries had to be generated for each test scenario. To ensure consistency across

tests - including matching traces and table rule configuration files - a metadata file called

flows.json has been generated. The flows-file has been used to store a list of one million

IP addresses, together with their corresponding TEID values; each JSON entry contains

source and destination IP addresses and an integer value ranging from 0 to 231− 1. All IP

addresses and TEIDs used are unique, meaning each value only appears at most once in

the flow-file, which is only generated once at the beginning of the project, and the values

stored within are used as base while generating traces and configurations for all tests. Each

1As described in the thesis preface, I also installed and configured a Barefoot Tofino switch, which by
itself required almost a month of my time. Unfortunately, there were issues with the control plane interface
for the switch, which is the reason why it is not included in the final thesis version

23

1 {"srcip": "2.144.111.207", "dstip": "205.212.147.22", "teid": 644680905},

2 {"srcip": "182.199.190.59", "dstip": "37.181.194.235", "teid": 604547847},

3 {"srcip": "228.220.128.225", "dstip": "88.139.83.242", "teid": 765561505},

Listing 2: Snippet from flows.json file, used to ensure flow consistency across tests. All
generated traffic flows and table rules are based on the values in this file

time files are generated for a new test case, flows.json is read into a global array called

iptable, which is referred to each time these values are needed.

Listing 2 present a snippet from the flows.json, showing the first few flow entries. Since

these are the first three entries in flows.json, these are also the addresses which will be

encountered in the first three packets during all tests; where these addresses can be found

inside the inner ipv4 as shown earlier in figure 2.3, and the match-actions tables will be

configured to encapsulate these packets with the TEIDs as shown in the snippet.

5.1.1 Generating Packet Traces

Packet traces are generated in a Packet Capture (PCAP) format using Scapy. These files

contain pre-generated network traffic, where raw packets are stored in the exact same

format in which they will be replayed through the equipment. The packet generation

function can be seen in appendix A.2.1, and takes 7 input parameters which defines the

generated trace as follows:

count How many packets that should be generated and included in this trace. These

packets are generated according to entries in flows.json, sequentially starting at the

beginning, so that a single packet is included for each of the first count entries in the

flows-file.

psize The size of packets generated and included in the trace. These traces only contain

packets of equal size; total size is including size of headers, and a random payload is

appended to the end of the packet so that total size of each packet equals psize.

24

uplink This specifies if the trace should contain uplink- or downlink packets, and will then

only contain packets of this type. Uplink packets are already GTP encapsulated,

while downlink packets are not GTP encapsulated. The TEID for uplink packets is

read from flows.json to match the IP addresses.

tsprepend When this is set to True, a 128bit Open Source Network Tester (OSNT) header

will be prepended to each packet, as explained later in section 5.4.1. This header

would if so contain three elements: a 32-bit signature, a 32-bit packet counter, and

a 64-bit transmit timestamp.

varyPorts If the source port in the outer UDP header should be varied, or be the same

for each packet. Due to RSS packet distribution across RX-queues, varying this could

improve performance. During the tests in this thesis, this parameter is always set to

false, since there will always be just a single RX-queue used for T4P4S.

markTarget If this value is set to True, packets will be marked with an ID matching

the target which will be responsible for processing this packet. A more detailed

explanation can be found in section 4.1.3.

markerIDs If markTarget is set to True, this will contain an ordered list of which marker

IDs should be inserted in which packets. This list is populated based on the specified

workload share between T4P4S and sNIC, so all packets marked for a specific target

also is included in the table configuration generated for that target.

5.1.2 Generating Table Entries

As explained in section 2.4, the control plane has to populate tables with correct rules. Dur-

ing this project, there were three different targets where tables had to be populated with

rules matching each generated test scenario. These targets are Barefoot Tofino, Netronome

sNIC, and T4P4S. Files generated for these targets contain the mappings between in-

ner ipv4 destination addresses and TEIDs, so that the target P4 pipelines encapsulate

25

packets correctly. The size of these lookup tables is a central part of this thesis, since the

number of mapped TEIDs is a direct representation of the number of simultaneous users

that each target is responsible for.

To populate tables in Tofino, a controller called Open Network Operating System

(ONOS) has been used. Due to this target no longer being a part of the final thesis,

there will be no need to spend time going in-depth in regards to that topic. ONOS is

reading table entries in a JSON format, containing table rules as seen in the snippet pre-

sented in appendix A.3.1. There is a lot of overhead required for each rule; a lot of this

information is for ONOS to recognize the device and application that should be updated.

The Netronome sNIC target is also reading table rules from a JSON formatted file,

similar to ONOS. These files, much like those of ONOS, contain rules and default action

for six tables, namely dmac, firewall DL, firewall UL, smac, vEPG UL, and vEPG DL. The

first generated file is called config netronome all.p4cfg, and contains rules for all generated

packets. Snippets from these configurations can be seen in appendix A.3.2. On top of

this configuration file, separate files are generated containing rules for a subset of total

generated packets to be used during offloading tests.

Configuration files are also generated for the T4P4S target. The controller which reads

these files has been written specifically for this project, making the structure of these

configuration files neat and simple. These are purely text files; each line containing space-

separated key-value-pairs in a pre-defined order. For the encapsulation rules, the first

column on every line is the inner ipv4 destination address in a xxx.xxx.xxx.xxx format, and

the second column is the matching TEID. Snippets from the T4P4S configuration files are

presented in appendix A.3.3.

For T4P4S, same as for the sNIC, configuration files are generated both for processing

all generated packets, and separate files containing rules complementing the configuration

files generated for the offloading sNIC; e.g. for 10% offloading, table configuration files

are generated for the sNIC containing rules for 10% of packets, and configuration files

26

for T4P4S are generated containing the other 90% of packets. Packets included in the

10% sNIC file are the packets which will be processed on the sNIC, i.e. the ones who are

accelerated.

5.2 SmartNIC Setup

A Netronome Agilio CX 2x40G sNIC [22] was attached to an Ubuntu 18.04 Linux server,

planned to act as a vEPG accelerator. The NFP Board Support Package (BSP)2 and

Software Development Kit (SDK)3 were both installed on the host.

Since the Netronome Agilio CX series of network cards are complete self-contained

systems, no optimizations on the host system has any impact on the performance of the

sNIC. It does, however, require SR-IOV support for the NFP P4 pipeline to be able to

send traffic directly down to the host user space applications.

The two 40G fiber ports on the sNIC were connected to a breakout module, each

fiber splitting into 4x10G ports. Two of these new 10G ports were then connected to the

NetFPGA running OSNT, which will act as traffic generator during these experiments.

5.3 DPDK Setup

DPDK 20.02 has been installed on the sNIC host server, and compilation of DPDK also

compiles kernel modules for binding to the sNIC VF-ports.

An SR-IOV compatible WS-C621E-SAGE motherboard [3] equipped with a 10 core

Intel Xeon Silver 4114 CPU [13] running two threads per 2.2GHz core and 2x16GB RAM

clocked to 2133MHz was used for DPDK processing and hosting the sNIC. Linux kernel

boot parameters have been updated to optimize for the DPDK installation, as shown in

listing 3.

These optimized kernel boot parameters make multiple changes, including isolating

2The NFP BSP released on 2018.06.29 was installed in the host system
3NFP SDK version 6.1.0.0 was installed in the host system

27

1 intel_pstate=disable mce=ignore_ce default_hugepagesz=1G hugepagesz=1G hugepages=6

↪→ isolcpus=0,1,2,3 rcu_nocbs=0,1,2,3 nohz_full=0,1,2,3 iommu=pt intel_iommu=on

Listing 3: Kernel boot parameters optimized for this DPDK installation

the first four processor cores, preventing background processes from operating here; this

way DPDK processing will be performed without any competition or context switching.

These modified boot parameters also allocate more huge pages, enabling the Input–Output

Memory Management Unit (IOMMU), and disable CPU scaling, all with the same goal of

improved DPDK packet processing performance.

After a P4 program has flashed onto the sNIC, the pre-compiled igb uio module is

inserted in the Linux kernel. The DPDK module is then bound to the Netronome VF

ports, removing the kernel network drivers which automatically bind to these devices.

This way, the sNIC P4 pipeline can forward packets for continued processing in DPDK

running on the host server.

5.3.1 Multiple Cores

The Netronome sNIC device in this setup is only reporting support of a single RX-queue

while running P4 firmware; as explained in earlier in section 2.4.4, this results in DPDK

only being able to utilize a single CPU core for packet processing. By installing a simple

non-programmable 2x10G Intel x710 NIC and binding DPDK to this device, it has been

verified that the multi-core limitation is due to issues specific to this sNIC device.

A workaround has been found to circumvent this problem by instead launching multiple

identical DPDK applications bound to their own Netronome VF ports. The sNIC pipeline

would then be responsible for load balancing traffic evenly across these VF ports, to share

the workload among all DPDK processes.

The Netronome PMD guide does mention how the driver limitation will be solved in

a future update[10]. Hence, no more time will be spent developing a workaround for this

problem.

28

1 vEPG arch=dpdk hugepages=2048 model=v1model smem intelCores intelPorts

2 vEPG0 arch=dpdk hugepages=2048 model=v1model smem vf0_0 netronomeCores0 netronomePorts0

Listing 4: Snippet from T4P4S profile configuration file

1 intelCores -> ealopts += -c 0x3 -n 4

2 netronomeCores0 -> ealopts += -c 0x1 -n 4

3 intelPorts -> cmdopts += -p 0x3 --config "\"(0,0,0),(0,1,1),(1,0,0),(1,1,1)\""

4 netronomePorts0 -> cmdopts += -p 0x1 --config "\"(0,0,0))\""

5 vf0_0 -> ealopts += --proc-type=primary --file-prefix "a" -w 0000:b3:08.0

6 vf0_1 -> ealopts += --proc-type=primary --file-prefix "b" -w 0000:b3:08.1

Listing 5: Snippet from the T4P4S configuration, showing some aliases created for this
project

Since the multi-core workaround solution would require a more complex DPDK con-

troller and sNIC pipeline, a single DPDK core is used for the rest of this thesis.

5.3.2 T4P4S

When DPDK modules are bound to the sNIC VF ports, the T4P4S DPDK application

must also compile and launch behind these ports. Multiple T4P4S profiles have been

created, each one for some specific test requirements; listing 4 show a snippet from the

T4P4S profile configuration file, including two of the profiles used during this project.

Aliases used in these profiles have been specifically created for this thesis project. Some

of the T4P4S aliases created for this project can be found in listing 5. The first two aliases

specify which cores should be used to run the T4P4S DPDK application, as well as how

many memory channels should be used. The last two aliases specify the mapping between

ports, queues, and cores.

’-p 0x3 ’ is a bit string specifying which ports the application should listen to;

’–config ’ takes a list of tuples specifying port, queue, core mappings in a (port,queue,core)

format;

’netronome0 ’ tests listen to the first port and then process incoming packets on a single

CPU core;

29

’intel ’ tests listen to the first two ports, each port distributing packets to the same two

RX-queues, and one port being responsible for processing packets in each RX-queue;

’vf0 0 ’ and ’vf0 1 ’ are used while creating multiple simultaneous T4P4S instances, each

bound to a different VF port. These aliases were created for the multi-core workaround

explained in section 5.3.1.

On top of this, a few changes had to be made to the T4P4S code base for this appli-

cation. By default, the P4 match-action tables are implemented as hash-tables in C; the

maximum size of these hash-tables is 1024 entries, which was increased to 102400 for the

back end hash tables to be able to store all TEID mappings used in this thesis.

Before transmitting packets, DPDK is storing these packets in a buffer which will then

be sent as a batch; this batch is sent either when 32 packet are received, or after a certain

timeout duration. By default, T4P4S has set this timeout duration to 100us, which will

greatly increase packet latencies while the system is under low load; it has therefore been

reduced to 10us.

5.3.3 T4P4S Controller

Before starting the T4P4S process, it is first necessary to load the T4P4S controller process,

which has been written in C specifically for this project, and is used to populate three P4

tables: portfwd, firewall DL, and vEPG DL.

portfwd and firewall DL are both populated with the same 1000 static entries each time,

as read from files. portfwd reads a file with each line containing two integer values, which

represent ingress port and egress port, and are written as-is to the portfwd table in the P4

program. This table only contains a single entry, which will forward all packets from port

0 to 1. Listing 6 is the complete file used to specify this rule, which can easily be expanded

to allow more complex packet forwarding functionality in the T4P4S pipeline.

The vEPG also includes a firewall, where it can be instructed to drop packets based

on specified IP addresses; for this pipeline implementation, the list of IP addresses is read

30

1 0 1

Listing 6: T4P4S port forwarding table configuration file, forwarding all packets received
through port 0 to port 1

1 87.179.138.75

2 233.60.20.29

3 111.152.239.22

4 207.157.186.112

Listing 7: Snippet from T4P4S IP firewall table configuration file

from a text-file, where each line contains an IP address as explained earlier in section 5.1.2.

The firewall configuration file has been generated so that none of the addresses listed will

ever be present in the packet traces used during the tests, to ensure consistency across

tests. Listing 7 show a few lines from the firewall file, demonstrating the simple format

used for IP firewall configuration in the T4P4S controller for this project.

While the T4P4S controller is reading the firewall configuration file, it splits each line

into four 8bit values around the ’dots’, and stores these in a global array containing all

parsed IP addresses; after the full file has been parsed, all rules are inserted into the T4P4S

P4 firewall table one at a time. All tables rule configurations are processed in a similar

way, where they are read as a batch from a configuration file, and then inserted as rules

one at a time to the correct T4P4S P4 table.

In contrast to the two previous configuration files, the file containing vEPG DL rules

is generated specific for each test case, populating the encapsulation table with rules spec-

ifying GTP encapsulation for the packets which will be encountered during specific tests.

Varying the size of the GTP encapsulation table is an important part of the project, since

it is a direct representation of how many GTP tunnels are allocated for processing in this

target. The vEPG DL file contains a list of IP addresses together with an integer value

ranging from 0 to 231−1, specifying which inner IP destination address should be encapsu-

lated with which TEID value. Entries in this configuration file are generated alongside the

31

1 205.212.147.22 644680905

2 37.181.194.235 604547847

3 88.139.83.242 765561505

4 237.164.169.14 1578545253

Listing 8: Snippet from T4P4S GTP encapsulation table configuration file, showing
generated IP/TEID mappings

Management

Specifying tests and
processing results

Traffic Generator
<NetFPGA w/ OSNT>

SmartNIC
<Netronome Agilio CX 2x40G>

DPDK
<T4P4S>

10G 10G

10G 10G

SR-IOV
VF

SR-IOV
VF

Define test

Load pipeline & rules

Load pipeline & rules

Read latencies

Read counters

Figure 5.1: Testbed design

packet traces, to ensure all packets which T4P4S will receive during the test has a matching

rule inserted in the GTP encapsulation table. IP addresses in this file are processed the

same way as before for the firewall table, but also include the mapped TEID alongside it.

Listing 8 show the first few lines from one of these files; note how the rules are generated

according to the flows.json file mentioned in section 5.1.

After the controller has been started, a T4P4S data plane process is launched; the

process will attach to the controller, which in turn will populate the pipeline match-action

tables as explained above.

5.4 Testbed

Setting up a testbed for measuring the impact of sNIC offloading was a substantial part

of the project. The result is a system for fully automated experiments, requiring only an

32

NetFPGA
<OSNT>PCAP

Memory
&

Replay

10G

Insert TX
timestamp

Load PCAP

10G

Insert RX
timestamp

Delay
Module Statistics

Match
Filters

Hit

To Host
 (Recording PCAP)

Device
Under
Test

Figure 5.2: OSNT simplified explanation. Single TX to another RX port

Pkt4 Pkt3 Pkt2 Pkt1

Full PCAP

Pkt4 Pkt3 Pkt2 Pkt1

Full PCAP

Pkt4 Pkt3 Pkt2 Pkt1

Full PCAP

Replayed traffic

Figure 5.3: OSNT replaying a pre-generated packet trace, containing four packets, three
times

initial list of testing parameters specifying tests to perform and record as a batch. An

overview of experimental procedure can be found in section 5.4.2.

5.4.1 Traffic Generation - OSNT

A NetFPGA SUME [8] running OSNT [2] is used as traffic generator during these exper-

iments. OSNT is a powerful FPGA hardware traffic generator with support for packet

latency measurements. A very simplified visualization how for OSNT works is presented

in figure 5.2.

As previously described in section 5.1.1, the traffic generator emits network traffic

according to pre-generated PCAP-files containing packet traces; packets in these PCAP-

files emits in-order as seen in figure 5.3. This way, all flows will be of equal intensity, and

could provide difficulties for cache-based optimizations in each target, since flow packets

33

Signature
(0xdeadbeef)32bit

Counter
(incremental)

Timestamp
(6.25ns res)

32bit

64bit

128bit
total

Figure 5.4: Structure of OSNT timestamp marker as written to packets

never appear back-to-back; shuffled packet transmission orders, and varied flow intensities,

should be included in future tests.

Timestamps can be inserted both during packet transmit and receive; the timestamp

difference will show the duration each packet has spent in the network before its return to

the NetFPGA. An offset for where in the packet to insert timestamps has to be specified,

so as not to overwrite any essential headers. Two approaches have been used during this

project; prepending the timestamp before the first ethernet header, and placing it in packet

payload. These timestamps have an impressive 6.25ns resolution4.

The OSNT timestamp module also inserts an OSNT signature of 0xdeadbeef, which

can be used to detect the timestamp, as well as an incrementing packet counter, as seen

in figure 5.4. Prepending an OSNT header to packets should not impact the evenness of

the RSS queue distribution, described earlier in section 2.4.4; as long as the RSS hash

includes at least the packet counter as input, enough entropy should be included in RSS

hash calculation to achieve an even queue distribution.

OSNT can be instructed to emit packets at a specified Inter-Packet Gap (IPG), which

is a delay in between the start of each packet transmission. If the PCAP-file only contains

packets of the same size, the IPG would be a viable tool for specifying the bit rate of

generated traffic. There is also an additional rate limiter module built into OSNT; due to

the restricted testing of a single packet-size at a time, specifying IPG was enough in regards

4For reference, light itself can only travel about 1.9 meters during 6.4 nanoseconds. This means that
we might even calculate the speed of light itself using this setup, by varying the length of fiber cables

34

to this project. Due to encapsulation inserting extra headers to packets, thereby increasing

their respective sizes, the RX- and TX bit-rates will not be identical. For downlink traffic

(coming from DCGW to eNodeB), encapsulation results in each packet increasing in size

by 36 bytes, resulting a higher bit-rate exiting the device than is received, while the reverse

is occurring for uplink traffic, where packets decrease in size by 36 bytes. During these

tests, the IPG is calculated to ensure that the specified bit-rate is reached at the most

loaded link; it is therefore calculated as shown below in equation 5.1.

IPG =


8∗(pktSize+36)

bitrate
, if downlink

8∗pktSize
bitrate

, if uplink

(5.1)

Furthermore, there is another noteworthy statistics module built into OSNT which is

calculating simple statistics based on incoming network traffic. During the course of these

experiments, the values extracted from this statistics module are the Packets Per Second

(PPS) and packet-counter values. The packet counter is incrementing each time a packet

is received by the NetFPGA. It is therefore possible to calculate the total system packet

loss as shown below in equation 5.2.

losstotal = replays ∗ PCAPnumPkts −OSNTRX (5.2)

PPS measurements are also extracted using this aforementioned statistics module.

Scripts on the NetFPGA host are polling the NetFPGA for these statistical values once

per second, until there is no more traffic detected. The last measurement is removed from

the stored results, and a mean value together with standard deviation is recorded based

on values polled from the NetFPGA. The reason for omitting the last measured PPS from

results is due to traffic not flowing for the full second, resulting in the last value being

invalid.

An integer specifying how many times to replay the trace has to be set while initiating

35

traffic generation. For most of these tests, this was calculated so that traffic would be

generated for a total of 10 seconds to ensure that enough PPS measurements are retrieved.

The number of times the PCAP should be replayed in OSNT was calculated as shown

below in equation 5.3, where time = 10s.

numReplays(time) =

⌈
bitrate ∗ time

8 ∗ pktSize ∗ PCAPnumPkts

⌉
(5.3)

It is preferred to split latency measurements based on processing target target, to

enable measuring what impact the offloading design has on packets processed by each

target. Splitting measurements based on processor is achieved by using the filter module

of OSNT. This module determines which packets should be sent from NetFPGA down

to CPU for further analysis. The actual timestamp differences are calculated in CPU,

which means that this filter will determine which packets will be included in the latency

measurements.

During encapsulation, each target modifies the outer IP header of packets so that it will

point to the DCGW. By having each target instead encode its own unique destination IP

address in this header, the value can be specified in the OSNT filter so that only packets

processed by a specific system are included in latency measurements on the NetFPGA

host. Since this measurement splitting method requires the NetFPGA to parse the packet

IP header, it is incompatible with a prepended OSNT header. Due to this, OSNT instead

inserts timestamping information into packet payloads.

Packet encapsulation is performed in the Device Under Test (DUT), which changes

the offset within each packet where the payload is starting. Because of this, the analysis

scripts running on the traffic generator parse the timestamping data with an offset of 36

bytes compared to where they are inserted, to compensate for headers inserted during

encapsulation. During measurements where the DUT is instead decapsulating packets, the

offset is set to -36 bytes.

Each experiment is performed up to three times, with three different filters. The first

36

test allows all packets down to CPU, the second only allows sNIC processed packets, and

the last time only allowed DPDK processed packets. This way it is possible to analyze the

performance of individual sub-processor during each test scenario.

5.4.2 Management Server

A server was set up to remotely control all machines involved in the experiments. This

manager is fed a list of testing parameters, and iterates over these until completion. For

each combination of inserted parameter values, the manager is loading required components

and instructions onto all involved machines. For each test, this is the procedure executed

by the manager:

1. Reset devices from last test

2. Start sNIC and flash new firmware

3. Populate match-action tables in sNIC

4. Bind DPDK drivers to sNIC VF ports

5. Start T4P4S controller, prepared with table entries

6. Compile and start T4P4S P4 pipeline

7. Load packet trace onto NetFPGA

8. Perform single trace replay at high IPG to populate device caches

9. Reset counters in sNIC and OSNT

10. Replay packet trace from NetFPGA

11. Parse PCAP containing subset of test packets, extracting latencies

12. Download latency histogram from traffic generator

37

13. Store test parameters and results in Comma-Separated Values (CSV)

5.5 Maximum Capacity Definition

A definition of what is meant by the maximum packet processing rate of a target has

to be established. Following the RFC2544 standard[5], frame loss rate is defined as

100(input count−output count)
input count

. output count is here defined as replays ∗ PCAPnumPkts, and

input count is an internal RX-counter included in the statistics module of OSNT.

Maximum device packet processing rates can be defined in multiple ways; below are

two relevant definitions based on the packet loss rate.

Non Drop Rate (NDR) does not allow for any packet loss while the device is under

maximum packet processing load. This definition is problematic, since even a sin-

gle packet loss caused by faulty drivers could greatly impact the maximum packet

processing rate. As seen later in section 6.1.1, T4P4S has a problem where a very

infrequent packet loss starts already at a moderate load; basing the maximum packet

processing rate on this definition might therefore be misleading.

Partial Drop Rate (PDR) allows for a partial drop rate to occur while the device is

under maximum load. The T4P4S partial drop rate during moderate load is very

low, often under 0.01%. The industry standard is to allow a 0.5% loss rate for PDR

throughput, and is what is used in this thesis.

The maximum packet processing rate of a device is now defined as R+, which is the

maximum possible packet arrival rate where the packet loss rate is less than 0.5%.

6 Evaluation

Performance of the hybrid VNF processor, performing basic layer 3 firewall functionality

and GTP processing, together with the performance of both individual sub-processors is

38

250 500 750 1000 1250 1500 1750 2000
0

50

100
L
at
en
cy

(u
s)

Without marker fast-path to DPDK

Loss @ 1000 TEIDs

Loss @ 10000 TEIDs

Loss @ 100000 TEIDs

Latency @ 1000 TEIDs

Latency @ 10000 TEIDs

Latency @ 100000 TEIDs

0.0%

10.0%

20.0%

P
ac
ke
t
lo
ss

ra
te

250 500 750 1000 1250 1500 1750 2000

Target load (kpps)

0

50

100

L
at
en
cy

(u
s)

With marker fast-path to DPDK

0.0%

10.0%

20.0%

P
ac
ke
t
lo
ss

ra
te

Figure 6.1: T4P4S performance while performing GTP encapsulation of 128B packets

measured and presented in this section.

During all these tests, GTP encapsulation is performed as explained in section 4.2.5; the

same sub-processor performing GTP encapsulation will also apply a layer 3 firewall table

populated with 1000 IP-matching rules, none of the addresses in this table will be present

in the replayed packet trace. GTP processing and basic layer 3 firewall functionality are

therefore both accelerated at the same time.

A single 10G fiber port is used for sending traffic from OSNT to the DUT, with a

second port used for sending traffic back from DUT to OSNT after processing; the testbed

is explained in greater detail earlier in section 5.4. An OSNT timestamp is inserted in the

payload of every packet, and is used for latency measurements during all tests, as explained

in section 5.4.1.

6.1 T4P4S vEPG Performance Behind SmartNIC

To evaluate the performance benefit gained by offloading certain flows to sNIC, base T4P4S

vEPG measurements without any active sNIC offloading has to be performed. During these

39

measurements, DPDK is still bound to the sNIC VF ports as described in section 4.1.2.

Two different offloading pipelines exist for the sNIC, as explained in section 4.1; two

equivalent tests have been performed with T4P4S running behind both of these sNIC

pipelines, one at a time, without populating any offloading sNIC tables. Packet traces

containing 128B downlink packets are replayed through the hybrid non-offloading target,

with load increasing at 100KPPS steps to measure performance at various target loads.

Measurements recorded during these tests are presented in figure 6.1. According to

these measurements, our T4P4S instance appears to handle loads of up to 1.6MPPS rela-

tively consistently; packet latencies appearing to be dependent on target load as expected.

When the target load is increased above certain thresholds, packet loss skyrockets and the

overall packet latency increases significantly. Number of mapped TEIDs appear to impact

the target performance, which is unexpected seeing as these mappings are stored in hash

tables; explanations to this phenomenon could be either reduced cache efficiencies, or in-

creased length of linked lists in backend hash table where these mappings are stored. Based

on the measurements presented in figure 6.1, there is no significant difference between the

two offloading designs in terms of performance; the marked approach should, according

to these results, therefore be a viable option when more complex NFV architectures are

preferred as explained earlier in section 4.1.3.

6.1.1 Early Packet Loss

While verifying functionalities of various components used in this project, an unexpected

early drop rate was detected in flows processed by the T4P4S target while running behind

the offloading sNIC pipeline. To find out if the sNIC system caused this phenomenon,

two equivalent low-load tests are performed similarly to earlier in section 6.1, with DPDK

bound to either a non-programmable Intel x710 2x10G NIC, or the sNIC executing the

non-marker pipeline without any offloading enabled.

Early drop rate was still present even while binding DPDK to the non-programmable

40

100 200 300 400 500 600 700 800 900 1000
0

10

20

L
at
en
cy

(u
s)

T4P4S vEPG running behind Intel NIC

Loss @ 1000 TEIDs Latency @ 1000 TEIDs

0.00000%

0.00100%

0.00200%

P
ac
ke
t
lo
ss

ra
te

100 200 300 400 500 600 700 800 900 1000

Target load (kpps)

0

10

20

30

L
at
en
cy

(u
s)

T4P4S vEPG running behind Netronome P4 Pipeline

0.0000%

0.0020%

0.0040%

0.0060%

P
ac
ke
t
lo
ss

ra
te

Figure 6.2: T4P4S loss rates while performing GTP encapsulation, 0% offloading, marker
enabled. Early packet loss before maximum capacity

NIC, as shown in figure 6.2. Packet loss, measured as explained in section 5.4.1, was

very infrequent but still a consistent issue both with DPDK bound to the sNIC and while

bound to the non-programmable Intel 2x10G NIC, although even more infrequent behind

the non-programmable NIC.

The T4P4S application, as it was set up and configured for this project, had an issue

with early packet loss. Figure 6.2 presents calculated packet loss rates during low-load

scenarios, showing infrequent but consistent packet loss at processing rates much lower

than the maximum T4P4S capacity as measured later in section 6.1.2. To confirm that

this was not an issue caused by the offloading sNIC setup, equivalent tests was performed

while binding DPDK to Intel x710 NIC ports; the same early loss issue was present there

as well, although not as early and frequent. Due to this early loss issue, maximum packet

rate has to be defined based on PDR, as explained in section5.5, where packet loss below

a certain threshold is allowed while the DUT is under maximum load.

41

0 250 500 750 1000 1250 1500 1750 2000
0.00%

0.25%

0.50%

0.75%

1.00%

P
ac
ke
t
lo
ss

ra
te

128B packet size

0.5% loss

loss @ 1000 TEIDs

loss @ 10000 TEIDs

loss @ 100000 TEIDs

0 250 500 750 1000 1250 1500 1750 2000

Target load (kpps)

0.00%

0.25%

0.50%

0.75%

1.00%

P
ac
ke
t
lo
ss

ra
te

256B packet size

Figure 6.3: T4P4S loss rates while performing GTP encapsulation behind SmartNIC, 0%
offloading, marker enabled

Table 6.1: Maximum T4P4S packet rates while performing GTP encapsulations behind
SmartNIC, 0% offloading, marker enabled

Num TEIDs Max Rate
1000 1.6MPPS
10000 1.5MPPS
100000 1.4MPPS

42

0 250 500 750 1000 1250 1500 1750 2000

Target load (kpps)

0.0%

5.0%

10.0%

15.0%

P
ac
ke
t
lo
ss

ra
te

T4P4S Performance

Loss behind sNIC

Loss behind Intel

Latency behind sNIC

Latency behind Intel

20

40

60

80

L
at
en
cy

(u
s)

Figure 6.4: T4P4S performance while performing GTP encapsulation of 128B packets,
comparing sNIC impact on performance. sNIC offloading is disabled during sNIC mea-
surements. 1k mapped TEIDs

6.1.2 Maximum Packet Rate

The maximum packet processing rate for the T4P4S pipeline implementation has to be

measured. DPDK is bound to sNIC VF ports; the sNIC is running the marker pipeline, as

explained in section 4.1.3, with offloading disabled. The number of mapped TEIDs impact

the T4P4S performance; because of this, multiple tests are performed while varying the

number of mapped TEIDs (1k, 10k, 100k). Packets are sent at an increased rate in 100kpps

steps, until the measured packet loss exceeds the 0.5% threshold, as explained in section 5.5.

Measured loss rates are presented in figure 6.3 for 128B and 256B packets, at increas-

ing packet rates. It is shown that the number of mapped TEIDs impact the maximum

processing rate of the T4P4S target; maximum packet processing rates, prior to reaching

the 0.5% loss rate threshold, are presented in table 6.1. Packet size did however not have

an impact on the maximum processing rate during these tests, which confirms that the

bottleneck is due to processing overheads.

43

6.2 T4P4S - Latency Imposed by SmartNIC Overhead

An offloading sNIC running a P4 pipeline imposes an additional delay on traffic destined

for T4P4S processing, which has to be measured. To measure this imposed latency, the

T4P4S process was bound to a traditional 2x10G Intel NIC, model x710, instead of the

offloading sNIC, where performance measurements were performed. During these tests,

the non-marker design was running on the sNIC with offloading disabled.

Packet processing performance for T4P4S mapping 1k TEIDs behind either the non-

programmable 2x10G Intel NIC or the offloading sNIC pipeline is presented in figure 6.4,

showing an approximately 14us additional base latency - on top of the 15us latency mea-

sured behind Intel - imposed by the sNIC pipeline without active offloading. During earlier

measurements, a base latency of 6us for the Netronome Agilio CX 2x40G was found; see-

ing how packets have to pass through the Netronome P4 pipeline twice in this setup, a

minimum imposed latency of 12us was expected.

It is likely possible to significantly reduce this additional latency imposed by the offload-

ing sNIC pipeline. One such approach could be to modify the Micro-C code generated by

the Netronome P4 compiler, and letting packets ingressing from T4P4S completely bypass

the P4 pipeline, or letting T4P4S egress through a non-programmable NIC. However, since

this thesis is just a proof of concept, implementing a basic prototype, the system set up

for these experiments is enough to prove a performance boost gained by sNIC offloading.

The additional base latency imposed by the offloading sNIC should be the same for all

offloading cases, not dependent on the complexity of the accelerated VNF; it is therefore

reasonable to expect greater performance benefits gained by sNIC acceleration in more

complex NFV environments where more processing overhead is present.

44

12
8B

25
6B

51
2B

10
24
B

Packet Size

0

10000

20000

30000

40000

50000

60000

70000

80000
L
at
en
cy

(u
s)

LPM match

12
8B

25
6B

51
2B

10
24
B

Packet Size

0

10

20

30

40

50

L
at
en
cy

(u
s)

Exact match

Figure 6.5: Netronome latencies while mapping 100k TEIDs at 1Gbps. Impact of LPM
matching

6.3 SmartNIC Performance

For the Netronome Agilio CX 2X40G sNIC to be evaluated as a viable VNF accelerator,

it is necessary to measure its stand-alone packet processing performance to ensure it can

deliver satisfactory results; the sNIC VNF implementation has therefore been performance

tested in isolation, with this section presenting findings from these tests.

6.3.1 Performance of LPM Table Matching

In the code which the sNIC P4 pipeline was based upon performs Longest Prefix Match

(LPM) matches against IP addresses to find the mapped TEID. Since every TEID has at

most a single IP encapsulated by it in the scenario evaluated in this thesis, LPM lookup

is not required for performing this GTP functionality.

As seen on the left hand side in figure 6.5, storing a TEID behind an LPM match

result in extremely high packet latencies. On the right hand side in figure 6.5, the perfor-

mance of storing these mappings behind exact-matches is presented. This simple pipeline

45

0 1000 2000 3000 4000 5000 6000 7000

Target load (kpps)

0.0%

5.0%

10.0%

15.0%

P
ac
ke
t
lo
ss

ra
te

Pure SmartNIC performance

Loss @ 1000 TEIDs

Loss @ 10000 TEIDs

Loss @ 100000 TEIDs

Latency @ 1000 TEIDs

Latency @ 10000 TEIDs

Latency @ 100000 TEIDs

20

40

60

L
at
en
cy

(u
s)

Figure 6.6: SmartNIC stand-alone performance while processing 128B packets

modification greatly improved the sNIC GTP performance, reducing the packet processing

latencies to less than a thousand of what they were before. All designs in this project will

as a direct consequence of this be using exact matching for all TEID mappings.

6.3.2 SmartNIC Stand Alone vEPG Performance

The performance of the offloading SmartNIC as a stand-alone vEPG processor has to be

measured for its behavior to be understood, which is here accomplished by instructing

the device to offload 100% of traffic; thereby including eventual offloading overhead in the

results.

Packet traces containing 128B downlink packets was replayed through the sNIC, con-

figured for 100% offloading, while increasing traffic load at 500KPPS steps; results from

these tests is presented in figure 6.6.

According to these measurements, the sNIC appears to handle vEPG downlink process-

ing of 128B packets up to 5MPPS without performance degradation, and up to 6MPPS

without any significant packet loss. A low latency jitter is delivered, with average latencies

ranging from 10us during low load to 20us at a higher load. The Netronome sNIC delivers

46

200 400 600 800 1000 1200 1400 1600 1800
0

50

100
L
at
en
cy

(u
s)

T4P4S

Loss @ 10% t4p4s

Loss @ 50% t4p4s

Loss @ 90% t4p4s

Latency @ 10% t4p4s

Latency @ 50% t4p4s

Latency @ 90% t4p4s

0.0%

2.0%

4.0%

6.0%

P
ac
ke
t
lo
ss

ra
te

200 400 600 800 1000 1200 1400 1600 1800

Combined load (kpps)

0

5

10

15

L
at
en
cy

(u
s)

Netronome

0.000%

0.020%

0.040%

P
ac
ke
t
lo
ss

ra
te

Figure 6.7: Netronome and T4P4S performance while sharing 10K TEID workload, with
marker approach for SmartNIC offloading

vEPG functionality at lower packet latencies than the T4P4S system managed even at the

best scenarios while bound to an ordinary Intel NIC. Combined with significantly reduced

latency jitter, the Netronome sNIC appears to be a viable VNF accelerator in this case.

6.4 Hybrid Target vEPG Performance

6.4.1 Offload Percentage Impact on Accelerated Traffic

For maximizing total network performance, one might want to accelerate as many traffic

flows as the accelerator can handle. However, does maximum sNIC offloading have a neg-

ative impact on the acceleration benefit of each individual accelerated flow? Performance

of both sub-processors where varying percentages of total traffic is offloaded has therefore

been measured.

Figure 6.7 presents measured performance of both sub-processors in the hybrid vEPG

target, where varying percentages of total traffic is accelerated by the sNIC. The opti-

mized encapsulation pipeline was deployed, packet traces with 128B downlink packets are

47

Table 6.2: Test parameters used to measure hybrid target performance while keeping
T4P4S at constant 1500 KPPS load

Tapas Share Total Load (KPPS) sNIC Load (KPPS) T4P4S Load (KPPS)
100 1500 0 1500
90 1666 166 1500
80 1875 375 1500
70 2142 642 1500
60 2500 1000 1500
50 3000 1500 1500
40 3750 2250 1500
30 5000 3500 1500

replayed, while a single CPU core was used for T4P4S processing.

According to the results in figure 6.7, the performance benefit of sNIC acceleration

is dependent on how much of total traffic is offloaded to the sNIC; i.e. when a larger

percentage of total traffic is offloaded, the performance benefit gained from acceleration

decreases. It might therefore be beneficial to only accelerate traffic which actually requires

it, leaving less time-sensitive traffic flows to be processed on the host as usual; this way

maximizing the performance benefit gained by accelerating these flows.

6.4.2 Combined Aggregate Performance

In this section, performance of the new hybrid target will be evaluated. To achieve this,

the T4P4S sub-processor will be kept at its maximum capacity, as presented earlier in

section 6.1.2; while T4P4S is under maximum load, the packet processing load on the

offloading sNIC is gradually increased.

Due to the hybrid system design requiring a shared incoming packet stream, the test

parameters are set according to table 6.2 to achieve a gradually increased load on the sNIC

with constant T4P4S load at maximum capacity.

To perform these tests using the packet marker approach, new traces have to be gener-

ated with correct individual marker values. Traces have been pre-generated with offloading

48

0
16
6

37
5

64
2
10
00

15
00

22
50

35
00

SmartNIC GTP Load (KPPS)

0

100

200

300

L
at
en
cy

(u
s)

Encapsulated in T4P4S

0
16
6

37
5

64
2
10
00

15
00

22
50

35
00

SmartNIC GTP Load (KPPS)

0

20

40

60

80

L
at
en
cy

(u
s)

Encapsulated in Netronome

Figure 6.8: Latency comparison for packets encapsulated in T4P4S or Netronome. 128B
packets, in total 10k mapped TEIDs, marker offloading design

percentages in 10% increments, starting at 0% up to 100% in each target. Because of this,

the total load required to keep T4P4S at constant load for each of these offload percentages

was calculated according to the following formula: TotalLoad = TapasTarget
TapasPercent

Figure 6.8 presents recorded latencies during tests using the load parameters from

table 6.2, where the combined hybrid target process a total of 10k TEIDs.

Even while the sNIC is forwarding traffic to T4P4S at the T4P4S maximum capacity,

the sNIC still manages to deliver lower latencies and higher consistency compared to the

T4P4S sub-processor. The Netronome sNIC also managed these results without dropping

a single packet assigned to the sNIC, making the sNIC a reliable packet processor.

A clear improvement both in terms of latency and jitter for offloaded flows can be seen

in figure 6.9, where a combined load of 3000 KPPS is sent to the hybrid processor, and

50% of traffic is offloaded to the sNIC for processing.

The testbed design used during these experiments is not able to generate traffic at a high

enough intensity to completely saturate the sNIC, which means that a more advanced setup

is required for measuring the maximum aggregated capacity of this new hybrid target; that

would require a traffic generator to utilize multiple fibers in parallel for delivering network

49

0 20 40 60 80 100 120 140

Latency (us)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

pktSize: 128B, targetLoad: 3000KPPS, numTEIDs: 10000
markTarget: ”True”, TS: Payload, tapasPercent: 50%

sNIC (accelerated)

T4P4S (non-accelerated)

Figure 6.9: Netronome and T4P4S processing latencies while sharing 10K TEID combined
workload, with marker approach for SmartNIC offloading. Latency CDF during 3000
KPPS 128B load with 50/50 offloading hybrid system

traffic to the hybrid vEPG target.

The testbed used during these measurements did manage to confirm successful vEPG

processing at a rate of at least 6500KPPS by the sNIC alone, which is already a significant

improvement in total capacity compared to T4P4S as a stand alone vEPG processor.

7 Conclusion

A hybrid system performing GTP encapsulation and firewall functionality in a mobile

packet core network has been designed and implemented, with a T4P4S compiled DPDK

application and equivalent Netronome Agilio CX 2x40G sNIC pipeline sharing total work-

load. A certain percentage of packets assigned to this hybrid target can be offloaded to

the sNIC, thereby providing acceleration for time-sensitive network traffic flows.

In this proof-of-concept implementation, traffic flows accelerated by the offloading sNIC

has half as much latency compared to traffic processed on the equivalent DPDK T4P4S

pipeline running on host CPU, while at the same time significantly reducing latency jitter.

Measured latencies for packets processed in T4P4S were in the range of 20us − 45us

50

depending on test scenario, while packets marked for sNIC acceleration measured in the

10us− 24us range.

These results indicate that sNIC offloading can be used to increase network performance

for time-sensitive URLLC flows, while at the same time allowing less time-sensitive flows

to be processed in an NFV environment on commodity server hardware.

Static performance evaluations, as used in this thesis, is not a perfect representation

of a real world mobile packet core scenario. To ensure hybrid packet processor viability

in handling URLLC flows, its performance in a dynamic environment has to be evaluated;

including varied flow intensities, burst patterns in network traffic, live table rule updates,

etc. A more complex test bed than what was used here is required to fully saturate the

sNIC, and thereby measuring the total aggregate capacity of this hybrid target. The hybrid

design, as designed and implemented in this project, is capable of offloading more varied

VNFs than what was evaluated in this thesis. A more general evaluation of offloading

specific operations is desired, including pure computationally intense operations used in

artificial intelligence, to parser-heavy Deep Packet Inspection (DPI) functionality useful in

complex firewall systems; thereby opening up for the possibility of providing even these

complex security-enhancing services for URLLC traffic flows.

51

References

[1] Sherif Abdelwahab et al. “Network function virtualization in 5G”. In: IEEE Com-
munications Magazine 54.4 (2016), pp. 84–91.

[2] Gianni Antichi et al. “OSNT: Open source network tester”. In: IEEE Network 28.5
(2014), pp. 6–12.

[3] ASUS. WS C621E SAGE — ASUS USA. June 4, 2020. url: https://www.asus.
com/us/Commercial-Servers-Workstations/WS-C621E-SAGE/specifications/.

[4] Pat Bosshart et al. “P4: Programming protocol-independent packet processors”. In:
ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95.

[5] Scott Bradner and Jim McQuaid. RFC2544: Benchmarking Methodology for Network
Interconnect Devices. 1999.

[6] Margaret Chiosi et al. “Network functions virtualisation: An introduction, benefits,
enablers, challenges and call for action”. In: SDN and OpenFlow world congress.
Vol. 48. sn. 2012, p. 202.

[7] Andrea Detti. “Functional architecture”. In: CNIT-Electronic Eng. Dept., Université
de Rome Tor Vergata ().

[8] Digilent. NetFPGA-SUME [Reference.Digilentinc]. June 2, 2020. url: https://

reference.digilentinc.com/reference/programmable-logic/netfpga-sume/

start?redirect=1.

[9] Chetan Hiremath John Mangan Michael Lynch DongJin Lee JongHan Park. Towards
Achieving High Performance in 5G Mobile Packet Core’s User Plane Function. Tech.
rep. Intel, 2018.

[10] DPDK. NFP poll mode driver library. url: https://doc.dpdk.org/guides/nics/
nfp.html (visited on 05/18/2020).

[11] Xenofon Foukas et al. “Network slicing in 5G: Survey and challenges”. In: IEEE
Communications Magazine 55.5 (2017), pp. 94–100.

[12] Zhanwei Hou et al. “Ultra-reliable and low-latency communications: prediction and
communication co-design”. In: ICC 2019-2019 IEEE International Conference on
Communications (ICC). IEEE. 2019, pp. 1–7.

[13] Intel. Intel Xeon Silver 4114 Processor Product Specifications. June 4, 2020. url:
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-

xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html.

[14] DPDK Intel. Data plane development kit. 2014.

[15] Hyoungju Ji et al. “Introduction to ultra reliable and low latency communications in
5G”. In: arXiv preprint arXiv:1704.05565 (2017).

52

https://www.asus.com/us/Commercial-Servers-Workstations/WS-C621E-SAGE/specifications/
https://www.asus.com/us/Commercial-Servers-Workstations/WS-C621E-SAGE/specifications/
https://reference.digilentinc.com/reference/programmable-logic/netfpga-sume/start?redirect=1
https://reference.digilentinc.com/reference/programmable-logic/netfpga-sume/start?redirect=1
https://reference.digilentinc.com/reference/programmable-logic/netfpga-sume/start?redirect=1
https://doc.dpdk.org/guides/nics/nfp.html
https://doc.dpdk.org/guides/nics/nfp.html
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/123550/intel-xeon-silver-4114-processor-13-75m-cache-2-20-ghz.html

[16] Georgios P Katsikas, Gerald Q Maguire Jr, and Dejan Kostić. “Profiling and ac-
celerating commodity NFV service chains with SCC”. In: Journal of Systems and
Software 127 (2017), pp. 12–27.

[17] Tamás Lévai et al. “The price for programmability in the software data plane: The
vendor perspective”. In: IEEE Journal on Selected Areas in Communications 36.12
(2018), pp. 2621–2630.

[18] Yong Li and Min Chen. “Software-defined network function virtualization: A survey”.
In: IEEE Access 3 (2015), pp. 2542–2553.

[19] Leonardo Linguaglossa et al. “Survey of performance acceleration techniques for net-
work function virtualization”. In: Proceedings of the IEEE 107.4 (2019), pp. 746–
764.

[20] Guyue Liu et al. “Design challenges for high performance, scalable nfv interconnects”.
In: Proceedings of the Workshop on Kernel-Bypass Networks. 2017, pp. 49–54.

[21] Netcope. P4 to VHDL. 2019. url: https://www.netcope.com/en/products/p4-
to-vhdl (visited on 05/14/2019).

[22] Netronome. Agilio CX SmartNICs - Netronome. May 7, 2020. url: https://www.
netronome.com/products/agilio-cx/.

[23] Netronome. NFP-4000 Theory of Operation. url: https://www.netronome.com/m/
documents/WP_NFP4000_TOO.pdf (visited on 05/14/2019).

[24] Netronome. Programming Netronome Agilio® SmartNICs. url: https : / / www .

netronome . com / m / documents / WP _ NFP _ Programming _ Model . pdf (visited on
05/14/2019).

[25] Barefoot Networks. Product Brief Tofino. May 7, 2020. url: https://barefootnetworks.
com/products/brief-tofino.

[26] Rolf Neugebauer et al. “Understanding PCIe performance for end host networking”.
In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication. 2018, pp. 327–341.

[27] Paul Quinn, Uri Elzur, and Carlos Pignataro. “Network service header (NSH)”. In:
RFC 8300. RFC Editor, 2018.

[28] Ashok Sunder Rajan et al. “Understanding the bottlenecks in virtualizing cellular
core network functions”. In: The 21st IEEE International Workshop on Local and
Metropolitan Area Networks. IEEE. 2015, pp. 1–6.

[29] Filipo Sharevski. “Towards 5G cellular network forensics”. In: EURASIP Journal on
Information Security 2018.1 (2018), p. 8.

[30] Myung-Ki Shin et al. “A way forward for accommodating NFV in 3GPP 5G systems”.
In: 2017 International Conference on Information and Communication Technology
Convergence (ICTC). IEEE. 2017, pp. 114–116.

53

https://www.netcope.com/en/products/p4-to-vhdl
https://www.netcope.com/en/products/p4-to-vhdl
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/m/documents/WP_NFP4000_TOO.pdf
https://www.netronome.com/m/documents/WP_NFP4000_TOO.pdf
https://www.netronome.com/m/documents/WP_NFP_Programming_Model.pdf
https://www.netronome.com/m/documents/WP_NFP_Programming_Model.pdf
https://barefootnetworks.com/products/brief-tofino
https://barefootnetworks.com/products/brief-tofino

[31] Suneet Kumar Singh et al. “Offloading Virtual Evolved Packet Gateway User Plane
Functions to a Programmable ASIC”. In: Proceedings of the 1st ACM CoNEXT
Workshop on Emerging in-Network Computing Paradigms. 2019, pp. 9–14.

[32] John Thompson et al. “5G wireless communication systems: Prospects and challenges
[Guest Editorial]”. In: IEEE Communications Magazine 52.2 (2014), pp. 62–64.

[33] Péter Vörös et al. “T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors”. In: 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE. 2018, pp. 1–8.

[34] Qi Zhang, Jianhui Liu, and Guodong Zhao. “Towards 5G enabled tactile robotic
telesurgery”. In: arXiv preprint arXiv:1803.03586 (2018).

54

Figure A.1: Packet dump after 50% workload sharing between SmartNIC and T4P4S-
T4P4S error detected

(a) In T4P4S - incorrect inner1 IP header (b) In SmartNIC - correct headers

Figure A.2: Raw packet dump after encapsulation, where the header directly following
GTP is highlighted, showing inconsistencies between targets

A Appendix

A.1 T4P4S Incorrect Encapsulation

While verifying the pipeline functionality running on Netronome and T4P4S, incorrect

headers was detected in packets processed by T4P4S. Downlink traffic was replayed through

the hybrid target, with a 50/50 workload split between the sNIC and T4P4S targets.

Equivalent pipelines are running on these two targets, and the processed packets coming

form these two targets are therefore expected to look the same. Figure A.1 shows a raw

traffic dump following this test as explained above; it is immediately apparent that there

is a problem with packets assigned to T4P4S for processing.

Figure A.2a shows the raw packet data, after being encapsulated in T4P4S. It is appar-

ent that encapsulation has been performed, since the packets have increased in size equal to

55

Figure A.3: T4P4S debug output during incorrect encapsulation - parser

Figure A.4: T4P4S debug output during incorrect encapsulation - creating encapsulation
headers

the inserted encapsulation headers. However, it can also be seen that the inner1 IP header

directly following the GTP header contains incorrect data. Compare this to a correctly

encapsulated packet as seen in figure A.2b, which is assigned for encapsulation in sNIC.

The test is retried, this time with T4P4S debug output enabled, in an attempt to

isolate the root cause. As seen in figure A.3, headers are correct as they enter the T4P4S

P4 pipeline. Later down in the encapsulation action, values in the inner1 ip header are

correctly copied from the old inner ip header as seen in figure A.4. T4P4S output shows

that no more changes are made to the inner1 ip in the ingress pipeline. So far during

packet processing, there are no issues.

Further down in the deparsing section of the pipeline, the issue was discovered, as seen

in figure A.5; the invalid header data seems to be based in incorrect header storage in

T4P4S. The development team behind T4P4S was contacted, and they confirmed that this

is a bug in the T4P4S P4 compiler. Shortly after contact, they released a patch for this

56

Figure A.5: T4P4S debug output during incorrect encapsulation - deparser

bug5, which was confirmed to fix this issue of incorrect GTP encapsulation in T4P4S.

A.2 Test Case Generating Code

A.2.1 Packet Trace Generation

1 #Generate vepg packets, return list of generated packets

2 def genvepgPackets(count, psize, uplink, tsprepend, varyPorts = False, markTarget =

↪→ False, markerIDs = []):

3 pkts = []

4 if markTarget == True:

5 if count > len(markerIDs):

6 print("ERROR! List of markers shorter than number of packets!")

7 exit()

8 for i in tqdm(range(0, count)):

9 pkt = Ether(src = DEFAULT_MACSRC, dst = DEFAULT_MACDST)

10 if markTarget:

11 pkt /= IP(src = DEFAULT_IPSRC, dst = DEFAULT_IPDST, id = markerIDs[i])

5This bug was fixed in T4P4S commit 8eea9be53e13ec98f9980cf8c164ddd0df10f271, released on May
5th 2020

57

12 else:

13 pkt /= IP(src = DEFAULT_IPSRC, dst = DEFAULT_IPDST)

14 #Having static ports could hinder RSS loadbalancing

15 if varyPorts == True:

16 pkt = pkt / UDP(sport = i%60000, dport = DEFAULT_DPORT)

17 else:

18 pkt = pkt / UDP(sport = DEFAULT_SPORT, dport = DEFAULT_DPORT)

19 pkt = pkt / VXLAN(flags = 0x40, vni = 42) / Ether(src = DEFAULT_MACSRC2, dst =

↪→ DEFAULT_MACDST2)

20 #Check if should prepend OSNT TS header

21 if tsprepend:

22 pkt = Raw(’A’ * 16) / pkt

23 #Uplink includes gtp encapsulation

24 if uplink:

25 pkt /= IP(src = DEFAULT_IPSRC2, dst = DEFAULT_IPDST2) / \

26 UDP(sport = DEFAULT_PORT2, dport = DEFAULT_PORT2) / \

27 GPRS_CUSTOM(flags = 0x30, msgtype = 0xff, length = psize - 100 + 10, teid =

↪→ iptable[i][’teid’])

28 pkt /= IP(src = iptable[i][’srcip’], dst = iptable[i][’dstip’]) / \

29 TCP(sport = 20, dport = 80)

30 if len(pkt) > psize:

31 print("Error! Packet too short! Current size without payload is: %i!" %len(pkt))

32 print("Aborting")

33 exit(0)

34 #Add random payload to packet, pkt will total psize

35 payloadsize = psize - len(pkt)

36 pkt /= Raw(RandString(size=payloadsize))

37 pkts.append(pkt)

38 return pkts

58

A.3 Table Configuration Files

A.3.1 Tofino

1 {

2 "priority": 4000,

3 "tableId": 1,

4 "deviceId": "device:tofino",

5 "isPermanent": "true",

6 "appId": "vepg-pipeconf",

7 "state": "ADD",

8 "treatment": {

9 "instructions": [

10 {

11 "type": "PROTOCOL_INDEPENDENT",

12 "subtype": "ACTION",

13 "actionId": "SwitchIngress.gtp_encapsulate",

14 "actionParams": {

15 "teid": "266d0cc9"

16 }

17 }

18]

19 },

20 "selector": {

21 "criteria": [

22 {

23 "type": "IPV4_DST",

24 "ip": "205.212.147.22/32"

25 }

26]

27 }

28 },

59

Listing 9: Snippet from Tofino table configuration JSON, showing a single rule for

vEPG DL table

A.3.2 Netronome

1 "ingress::dmac": {

2 "rules": [

3 {

4 "action": {

5 "type": "ingress::nop"

6 },

7 "name": "Mac1_DMAC",

8 "match": {

9 "ethernet.dstAddr": {

10 "value": "d0:69:0f:a8:39:90"

11 }

12 }

13 }

14],

15 "default_rule": {

16 "action": {

17 "type": "ingress::drop"

18 },

19 "name": "application_default"

20 }

21 },

Listing 10: Snippet from Netronome table configuration JSON, showing configuration for

dmac table

1 "ingress::dmac": {

2 "rules": [

60

3 {

4 "action": {

5 "type": "ingress::nop"

6 },

7 "name": "Mac1_DMAC",

8 "match": {

9 "ethernet.dstAddr": {

10 "value": "d0:69:0f:a8:39:90"

11 }

12 }

13 }

14],

15 "default_rule": {

16 "action": {

17 "type": "ingress::drop"

18 },

19 "name": "application_default"

20 }

21 },

Listing 11: Snippet from Netronome table configuration JSON, showing configuration for

dmac table

1 "ingress::firewall_DL": {

2 "default_rule": {

3 "action": {

4 "type": "ingress::nop"

5 },

6 "name": "application_default"

7 }

8 },

Listing 12: Snippet from Netronome table configuration JSON, showing configuration for

firewall DL table

61

1 "ingress::firewall_UL": {

2 "default_rule": {

3 "action": {

4 "type": "ingress::nop"

5 },

6 "name": "application_default"

7 }

8 },

Listing 13: Snippet from Netronome table configuration JSON, showing configuration for

firewall UL table

1 "ingress::smac": {

2 "rules": [

3 {

4 "action": {

5 "type": "ingress::mac_learn"

6 },

7 "name": "Mac1_SMAC",

8 "match": {

9 "ethernet.srcAddr": {

10 "value": "d0:23:0f:a8:39:23"

11 }

12 }

13 }

14],

15 "default_rule": {

16 "action": {

17 "type": "ingress::mac_learn"

18 },

19 "name": "application_default"

20 }

21 },

62

Listing 14: Snippet from Netronome table configuration JSON, showing configuration for

smac table

1 "ingress::vEPG_UL": {

2 "rules": [

3 {

4 "action": {

5 "type": "ingress::gtp_decapsulate"

6 },

7 "name": "UL_IP1",

8 "match": {

9 "inner_ipv4.dstAddr": {

10 "value": "10.0.0.2"

11 }

12 }

13 }

14],

15 "default_rule": {

16 "action": {

17 "type": "ingress::drop"

18 },

19 "name": "application_default"

20 }

21 },

Listing 15: Snippet from Netronome table configuration JSON, showing configuration for

vEPG UL table

1 "ingress::vEPG_DL": {

2 "rules": [

3 {

4 "action": {

63

5 "data": {

6 "teid": {

7 "value": "644680905"

8 }

9 },

10 "type": "ingress::gtp_encapsulate"

11 },

12 "name": "DL_RULE_0",

13 "match": {

14 "inner_ipv4.dstAddr": {

15 "value": "205.212.147.22"

16 }

17 }

18 },

19 {

20 "action": {

21 "data": {

22 "teid": {

23 "value": "604547847"

24 }

25 },

26 "type": "ingress::gtp_encapsulate"

27 },

28 "name": "DL_RULE_1",

29 "match": {

30 "inner_ipv4.dstAddr": {

31 "value": "37.181.194.235"

32 }

33 }

34 }

35],

36 "default_rule": {

37 "action": {

64

38 "type": "ingress::tohost"

39 },

40 "name": "application_default"

41 }

42 }

Listing 16: Snippet from Netronome table configuration JSON, showing configuration for

vEPG DL table with just two TEID mappings

A.3.3 T4P4S

1 205.212.147.22 644680905

2 37.181.194.235 604547847

Listing 17: Complete T4P4S vEPG DL configuration file, for test case with just two TEID

mappings

65

Acronyms

5G Fifth Generation mobile networks. 1, 4, 5, 14

5GC 5G Core Network. 3, 4, 5, 6

ARP Address Resolution Protocol. 9

ASIC Application Specific Integrated Circuit. 7, 8, 11

BSP Board Support Package. 27

CPU Central Processing Unit. 2, 3, 7, 11, 12, 22, 28, 29, 36, 37, 50

CSV Comma-Separated Values. 38

CUPS Control and User Plane Separation. 4, 6

DCGW Data Center Gateway. 7, 35, 36

DPDK Data Plane Development Kit. 2, 12, 13, 15, 16, 17, 18, 27, 28, 29, 30, 37, 40, 41,

43, 50

DPI Deep Packet Inspection. 51

DUT Device Under Test. 36, 39, 41

eNodeB E-UTRAN Node B. 7, 35

EPC Evolved Packet Core. 4, 6, 7

EPG Evolved Packet Gateway. 6

FPGA Field-Programmable Gate Array. 8, 33

66

GTP GPRS Tunneling Protocol. 1, 2, 3, 6, 7, 8, 12, 15, 16, 17, 18, 21, 22, 25, 31, 32, 38,

39, 45, 46, 50

IOMMU Input–Output Memory Management Unit. 28

IP Internet Protocol. 8, 9, 18, 22, 23, 25, 30, 31, 32, 36, 39, 45

IPG Inter-Packet Gap. 34, 35, 37

LPM Longest Prefix Match. 45

LTE Long-Term Evolution. 4, 5, 7

MAC Medium Access Control. 19, 21

NDR Non Drop Rate. 38

NFP Network Flow Processor. 11, 12, 15, 27

NFV Network Function Virtualization. 1, 2, 3, 6, 8, 14, 40, 44, 51

NIC Network Interface Card. 2, 8, 11, 12, 13, 14, 15, 16, 17, 28, 40, 41, 44, 47

NSH Network Service Header. 18

ONOS Open Network Operating System. 26

OSNT Open Source Network Tester. 25, 27, 33, 34, 35, 36, 37, 38, 39

PCAP Packet Capture. 24, 33, 34, 36, 37

PDR Partial Drop Rate. 38, 41

PF Physical Function. 16

67

P-GW Packet Data Network Gateway. 5

PMD Poll Mode Driver. 12, 28

PPS Packets Per Second. 35, 36

RAN Radio Access Network. 7

RSS Receive-Side Scaling. 13, 25, 34

RX Receive. 12, 13, 25, 28, 30, 35, 38

SDK Software Development Kit. 27

S-GW Serving Gateway. 5

sNIC SmartNIC. 2, 3, 11, 12, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 32, 37, 39,

40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 55, 56

SR-IOV Single-Root Input/Output Virtualization. 12, 16, 17, 27

TEID Tunnel Endpoint Identifier. 8, 16, 17, 22, 23, 24, 25, 26, 30, 31, 32, 40, 43, 44, 45,

46, 49

ToR Top-of-Rack. 7

TX Transmit. 13, 35

UPF User Plane Function. 4, 6, 18, 21

URLLC Ultra-Reliable and Low-Latency Communication. 1, 5, 51

vEPG Virtual Evolved Packet Gateway. 4, 6, 7, 8, 15, 18, 27, 30, 39, 46, 47, 50

VF Virtual Function. 12, 17, 18, 27, 28, 29, 30, 37, 40, 43

VNF Virtual Network Function. 1, 2, 3, 4, 6, 7, 14, 15, 38, 44, 45, 47, 51

68

	Introduction
	Background
	Network Function Virtualization (NFV)
	5G Core Network Architecture
	GPRS Tunneling Protocol (GTP)
	P4 Programming Language
	P4 Design Philosophy
	P4 Compatible Hardware
	Netronome SmartNIC
	T4P4S and DPDK

	Motivation
	Design
	Offloading Overview
	DPDK Without SmartNIC Offloading
	Simple SmartNIC Offloading
	Offloading With Marked Fast Path to DPDK

	vEPG Pipeline
	Parser
	Ingress
	Egress
	Deparser
	Encapsulation Action, and Optimization
	SmartNIC Offloading Functionality

	Implementation and Methodology
	Generating Test Cases
	Generating Packet Traces
	Generating Table Entries

	SmartNIC Setup
	DPDK Setup
	Multiple Cores
	T4P4S
	T4P4S Controller

	Testbed
	Traffic Generation - OSNT
	Management Server

	Maximum Capacity Definition

	Evaluation
	T4P4S vEPG Performance Behind SmartNIC
	Early Packet Loss
	Maximum Packet Rate

	T4P4S - Latency Imposed by SmartNIC Overhead
	SmartNIC Performance
	Performance of LPM Table Matching
	SmartNIC Stand Alone vEPG Performance

	Hybrid Target vEPG Performance
	Offload Percentage Impact on Accelerated Traffic
	Combined Aggregate Performance

	Conclusion
	References
	Appendix
	T4P4S Incorrect Encapsulation
	Test Case Generating Code
	Packet Trace Generation

	Table Configuration Files
	Tofino
	Netronome
	T4P4S

	Acronyms

