
Towards Neural Network Inference on Programmable Switches
Jonatan Langlet
Karlstad University
Karlstad, Sweden

jonatan.langlet@gmail.com

Andreas Kassler
Karlstad University
Karlstad, Sweden

andreas.kassler@kau.se

Deval Bhamare
Karlstad University
Karlstad, Sweden

deval.bhamare@kau.se

ABSTRACT
Recent advances in machine learning (ML) have gained a lot of
interest in the domain of computer networks and network security.
Machine learning techniques can be used to understand normal
behavior, detect anomalies, infer root causes of such anomalies
and take proper actions. Learning-based approaches are very ef-
fective, since the underlying models could be re-trained to counter
a large amount of evolving and complex data using comprehen-
sive datasets. Training a machine learning model and applying the
trained model inside the network on real traffic are two completely
different tasks which require different resources. Training of ma-
chine learning models is very complex, requires a large amount of
resources and is typically done offline on specialized equipment
(e.g. TensorFlow, etc.). On contrary, applying a ML model in a real
networking environment requires substantially different packet
processing capabilities than the ones available from traditional IP-
oriented networking equipment. Therefore, ML based inference
together with the collection of proper features, which are required
for the inference, is typically done in software on dedicated equip-
ment (e.g. inside a separate Intrusion Detection System or Flow
Classification box), which comes with several drawbacks. First,
adding additional equipment to traditional networking gear leads
to complex deployment. Second, the additional hop introduces ad-
ditional latency, which impacts the end-to-end performance, and
leads to higher detection latency for e.g. critical events. To overcome
the aforementioned problems, in this paper we propose to perform
feature collection and artificial neural network (ANN) inference
directly in the data plane of programmable packet processors.

The development of an ANN inference capable data plane is
faced with non-trivial challenges due to the complex processing
logic involved. First, for supporting different use cases and neural
network models, the data plane needs to be able to dynamically col-
lect a variety of different features, which requires a flexible parsing
of packet headers, including IP, TCP options and application spe-
cific protocol fields. Second, the complex mathematical operations
involved in ANN inference are challenging to run effectively in
the data plane, due to its processing and memory limitations. The
requirement to process packets at line rate further exacerbates the
challenge. However, the recent emergence of programmable packet-
processing pipelines [2], together with high-level language P4 [1]
and compiler support, creates new opportunities for innovation in
networking. Once basic support for feature collection and inference
is implemented in P4, the operator can modify the program and
propagate the tables and registers so that it fits her ANN model and
scenario and compile it to different hardware (e.g. NIC, switch).

We have designed and implemented traffic flow feature collec-
tion together with feedforward neural network inference on a
Netronome Agilio CX 2x40G SmartNIC. The ANN model is trained
offline and then applied as a Micro-C external function to perform

inference on the collected flow features which can perform, for
example, flow classification, intrusion detection or QoE estimation.
Only the first few packets in each traffic flow are recorded to gather
enough metadata for performing ANN inference, where the number
of packets to inspect for feature extraction is specified in a P4 reg-
ister. Our implementation can flexibly be instructed which features
to record for each flow. When feature extraction is complete, ANN
inference is triggered and its output is stored per-flow using register
arrays. This value can then be used by other P4 actions for determin-
ing forwarding rules for subsequent flow packets, and for example
redirect time-sensitive flows through a faster route or immediately
block unwanted traffic. ANN parameters and activation levels are
typically stored as floating point values, which are not supported in
P4. Instead, we use fixed-point approximation using 64-bit integers
and bit-shifting. Because P4 lacks support for exponential functions,
we use ReLU as activation function. We are currently working on
implementing a sigmoid approximation as an alternative to ReLU.
In our implementation, the ANN is stored directly in the memory
of the SmartNIC, and its structure (i.e. number of hidden layers
and neurons) is defined at compile-time due to the lack of dynamic
memory support. The ANN parameter values are also currently set
during compile-time, however it should be possible to update these
values at run-time as the SmartNIC host has built in functionality
to modify these memory regions. This means that we can update
the model dynamically without reloading the firmware, as long as
the structure of the ANN is unchanged.

Using packet traces, we find that extracting a total of 43 flow
features results in additional packet latency of 16µs for the first
few packets in each flow, compared to the base latency of 6µs that
is required by the simple P4 forwarding switch. ANN inference
results in additional latency depending on the model complexity.
For example, for an ANN with two hidden layers with 10 neurons
each, the inference latency is 65µs while it increases to 915µs for
larger ANNs having three hidden layers with 30 neurons each.
Because the inference is done on metadata for a single packet per
flow once features are collected, our implementation has a negligible
impact on the latency of subsequent packets of the given flow.

ACKNOWLEDGMENTS
Parts of this work has been funded by the Knowledge Foundation
of Sweden through the Profile HITS.

REFERENCES
[1] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, NickMcKeown, Jennifer Rexford,

Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. 2014. P4:
Programming Protocol-Independent Packet Processors. ACM SIGCOMM Computer
Communication Review 44, 3 (2014), 87–95.

[2] Pat Bosshart, Glen Gibb, Hun seok Kim, George Varghese, Nick Mckeown, Martin
Izzard, O Mujica, and Mark Horowitz. 2013. Forwarding Metamorphosis: Fast
Programmable Match-Action Processing in Hardware for SDN.


	Abstract
	Acknowledgments
	References

