
Spatiotemporal Sketch Disaggregation: Streaming
Analytics with Heterogeneous Resources

Jonatan Langlet
Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden

jlanglet@kth.se

Peiqing Chen
Department of Computer Science

University of Maryland, College Park
College Park, MD, USA

pqchen99@umd.edu

Michael Mitzenmacher
Engineering and Applied Sciences

Harvard University
Allston, MA, USA

michaelm@eecs.harvard.edu

Zaoxing Liu
Department of Computer Science

University of Maryland, College Park
College Park, MD, USA

zaoxing@cs.umd.edu

Ran Ben Basat
Computer Science department

University College London
London, United Kingdom

r.benbasat@cs.ucl.ac.uk

Gianni Antichi
Dept. of Electronics, Information and Bioengineering

Politecnico di Milano
Milano, Italy

gianni.antichi@polimi.it

Abstract—Streaming analytics are essential in a large range
of applications, including databases, networking, and machine
learning. To optimize performance, practitioners are increasingly
offloading such analytics to network nodes such as switches. How-
ever, resources such as fast SRAM memory available at switches
are limited, not uniform, and may serve other functionalities as
well (e.g., firewall). Moreover, resource availability changes over
time due to the dynamic demands of in-network applications.

In this paper, we propose a new approach to disaggregating
data structures, leveraging any residual resources available at
network nodes. We focus on sketches, which are fundamental
for summarizing data for streaming analytics while providing
beneficial space-accuracy tradeoffs. Our idea is to break sketches
into multiple ‘fragments’ that are placed at different network
nodes. The fragments cover different time periods and vary
in size, and are combined to form a network-wide view of
the underlying traffic. We apply our solution to three pop-
ular sketches (namely, Count Sketch, Count-Min Sketch, and
UnivMon) and demonstrate that we can achieve approximately
a 75% memory size reduction for the same error for many
queries, or a near order-of-magnitude error reduction if memory
is kept unchanged. Further, we demonstrate real-world feasibility
through a hardware pipeline for high-speed commodity switches.

Index Terms—Distributed data structures, Network monitor-
ing, Computations on discrete structures, Pipeline implementa-
tion

I. INTRODUCTION

Streaming analytics tools for tracking and analyzing system
behavior, where requests are made at run-time, are impor-
tant for many applications in databases [32], [52], [73] and
networking [35], [71], [72]. For example, in databases, one
may wish to know the entries that are most frequently being
accessed over a time window [52]; similarly, in networking,
one may wish to find the heaviest flow (connection) in the
network over a time period [5].

To reduce costs and improve performance, practitioners of-
fload functionalities to network devices, such as programmable
network switches [12], [59]. A fundamental challenge is that
these have little available memory and limited computation

Sketch

Topological
State

Disaggregation
Engine

Re-aggregation

Deplo
y Collect

Input

Input

++
++

++ Query
Online Monitoring

Fig. 1: Overview of Sketch Disaggregation.

capabilities [13], [14], [58]. The total amount of memory
available for line-rate statefulness and packet buffering is as
little as O(10MB) [58]. Further, these resources need to be
shared across different applications, including streaming ana-
lytics [7], [53], [64], security [54], [69], [70], machine learning
aggregation [45], [49], [62], storage for database systems [47],
[52], [65], and various network functionalities [38], [51], [55],
[60]. As different switches may run different applications,
and their requirements change dynamically (e.g., based on the
traffic or query patterns), the amount of free resources varies
greatly and constantly changes, making it hard to deploy any
analytics solution that requires a fixed amount of memory.

In this paper, we propose utilizing switches’ current residual
resources as ‘fragments’ of a disaggregated data structure.
Focusing on sketches, as they are fundamental building blocks
for streaming analytics, we present a principled way to disag-
gregate a single data structure into multiple, dynamically sized
pieces that can change in real time (Figure 1). Those fragments
can be centrally collected and used together to answer queries
similarly to a single data structure.

While there has been a lot of research focused on minimiz-
ing the sketch size while optimizing the size-accuracy trade-
off [17], [19], [23], [53], [57], these measure flow statistics
at a single node, and their accuracy is thus restricted by the
resources available there. However, this overlooks the poten-
tial benefits of leveraging residual resources at other nodes.
Our key observation is that in networks, the same packet
typically traverses multiple nodes (e.g., switches), allowing
us to leverage the varying memory across these nodes to im-

prove the accuracy, even when different packets pass through
different switches. Although we focus on network analytics,
our principles apply to similar settings that naturally appear
in distributed databases. For instance, in distributed indexes,
where key searches traverse multiple nodes with different
searches following different paths, the resources along the path
can be effectively harnessed [1], [67].

More concretely, each node fragment provides an estimate,
and our methods combine these to produce a single, accurate,
estimate from the ensemble along a flow’s path. While this
is conceptually straightforward, several challenges arise due
to inequalities in sketch accuracy caused by heterogeneity:
(1) nodes vary in resource availability, (2) nodes experience
different traffic volumes, and (3) flows traverse paths of
different lengths, resulting in varying numbers of fragments
forming estimations. Furthermore, we must address switches’
highly restricted computational capabilities, where even basic
operations like multiplication and division may be unsupported
in the hardware, and minimal computation can be performed
per packet due to fast line rates.

In our solution, we consider the time divided into con-
secutive ‘epochs’ that provide the granularity at which the
user can express its queries. The main innovation is to make
epochs divisible, consisting of smaller ‘subepochs’ after which
the fragment is collected. Each flow is measured during a
single subepoch per epoch, allowing us to utilize the available
resources at a switch more efficiently. This approach trades
memory for reporting frequency: when memory is constrained,
more subepochs are used to ensure the error is within accept-
able bounds; when memory is abundant, fewer subepochs are
needed, thereby reducing the collection frequency.

To answer queries, we combine the fragments that measure
the flow across the nodes along its path. Estimates from frag-
ments covering shorter subepochs are scaled proportionally
to ensure comparability across measurements. The underlying
assumption is that, since epochs are short, a flow’s rate
remains relatively uniform within an epoch, allowing accurate
estimations to be inferred from a single subepoch.

We realize this technique in DiSketch – a system that
efficiently disaggregates sketches to leverage all residual re-
sources while optimizing accuracy. We demonstrate the gen-
erality of DiSketch, we apply it to three popular sketches:
Count Sketch [17], Count-Min Sketch [23], and UnivMon
[53]. We compare DiSketch against traditional sketch deploy-
ments (which we refer to as “aggregated”) as well as versus
DISCO [15], a recent sketch disaggregation technique. Exten-
sive experiments show that our solution is highly memory-
efficient, achieving comparable accuracy to DISCO while
using only 25% of the memory, or reducing error by nearly
an order of magnitude under the same memory constraints.

II. MOTIVATION
Recent advancements in streaming analytics have led to the

development of compact sketch-based solutions, as described
in several works [27], [39]–[41], [53], [57], [68], [74]. These
studies have demonstrated the feasibility of implementing
these structures within the constraints of modern switches,

Application Examples Memory

Basic Packet Processing switch.p4 [56] 30%

Security Ripple [70], Jaqen [54], Bedrock [69] +10-50%
Machine Learning SwitchML [62], ATP [45], THC [49] +10-40%
Storage/Database DistCache [52], NETACCEL [47], Cheetah [65] +20-30%
Networking SilkRoad [55], HPCC [51], SwRL [38], Sailfish [60] +5-40%

TABLE I: The on-switch memory cost of network functions.

CountMin CountSketch SuMax UnivMon
Sketch

0%
20%
40%
60%
80%

100%

SR
AM

 F
oo

tp
rin

t

Ex
ce

ed
s c

ap
ac

ityF1 Score
90%
99%
99.9%

Fig. 2: On-switch memory cost to achieve an accuracy target
while monitoring 30s of real-world backbone traffic.

achieving minimal estimation errors [40], [41], [57], [74].
However, sketches are memory-intensive data structures, and
their accuracy directly depends on the amount of memory
dedicated to them. As we show later, deploying sketches on
switches alongside other functionality competing for limited
memory can result in significant accuracy degradation.

Our survey of recent literature on in-network computing,
which encompasses applications ranging from security to
machine learning acceleration and network functions, reveals
a significant demand for switch resources. For instance, basic
packet processing capabilities alone, such as L2/L3 forward-
ing, may consume up to 30% of a switch’s memory, as shown
in Table I. Including additional functionalities further reduces
the available memory for sketches.

To quantify the impact of this resource competition, we
analyzed the SRAM memory requirements of both established
(i.e., Count Sketch [17], Count-Min-Sketch [23]) and recently
proposed sketches (i.e., UnivMon [53], SuMax [74]) for heavy
hitter detection over a 30-second window (similar to previous
works [53], [68], [71]), using real-world traffic traces from
an Internet backbone [16]. Our findings, depicted in Figure 2,
show that to achieve a 99% F1 score, the memory demand of
sketches ranges from 20% to nearly 90% of a programmable
Tofino switch’s SRAM [58], underscoring the challenge
of maintaining high monitoring accuracy while co-locating
sketches with other functions. A high monitoring accuracy
is essential as the base of responsive diagnosis [50], [63],
and a 99% accuracy already indicates a significant amount of
incorrect flow classification. Improved classification accuracy
requires even more memory and can sometimes exceed the
switch’s memory capacity, even in isolation.

Moreover, even if a sketch is not co-located with any
other in-network function, it is worth noting that the amount
of traffic observed by each switch significantly differs, and
there can be orders of magnitude different volumes even for
switches with the same logical purpose (e.g., edge switches
in a datacenter) [8], [26], [61]. As a consequence, deploying
the measurement on a cut in the network topology (e.g., all

edge switches [36]) results in varying degrees of accuracy even
when all switches have the same memory allocated.

Acknowledging these challenges, disaggregating sketches
across multiple switches emerges as a promising solution for
utilizing network-wide resources.

III. SKETCH DISAGGREGATION
We consider disaggregating sketches, which, for our pur-

poses, are viewed as a matrix structure in which each cell
is an identical copy of a simpler data structure, usually a
counter. We further assume that when an element (e.g., a
packet) is inserted into the data structure, its key (e.g., flow
ID) is mapped via hashes into one or more cells in each row,
and the cells are updated appropriately. In what follows we
assume one cell is updated in each row, and that cell is chosen
uniformly in each row by the hash function. Examples of such
sketches include ones for frequency estimation [17], [24], [28],
[41], [74], set membership [9], [27], [29], sparse recovery [31],
[42], frequency moments estimation [4], [18], [53], entropy
estimation [20], [37], [53], and ℓp samplers [21], [22]. These
sketches’ cells are exported and reset periodically, to prevent
the buildup of stale data and subsequently reduced estimation
accuracy. The period between resets is referred to as the epoch.

Understanding the challenges of sketch disaggregation
across multiple nodes begins with a depiction of a datacenter
network’s architecture. A classic Fat-Tree topology, commonly
referenced in literature and employed in real-world deploy-
ments, is illustrated in Figure 4. This topology highlights the
existence of numerous paths between any two end-nodes, with
the number of hops varying based on the nodes’ locations.
For example, flows between (A) and (B) traverse just a single
switch, while any path between (A) and (D) contains five
switches. Sketch disaggregation is then the process of dividing
a sketch across network paths, where each network node hosts
a fragment of the sketch. As in traditional deployments, we
assume that at the end of each epoch, per-node data structures
are sent for analysis to a central server called the controller.
After collection and aggregation, per-path fragments can be
queried together to answer queries similarly to traditional
aggregated sketches. With this in mind, there are two natural
approaches to disaggregating sketches: per-column and per-
row disaggregation.

In per-column disaggregation (Figure 3a), each network
hop would host all sketch rows of the sketch matrix, but
only a part of the columns. Keys are still mapped to one
cell in each row, selected uniformly at random by a hash
function. This requires that both the path length and fragment
widths have to be known by all sketch nodes when a packet
is traversing the network, which is costly. That is because
a switch needs to know the indices of columns it holds, as
well as the total number of on-path columns, since the hash
functions need to output a column index. Previous work on
sketch disaggregation attempts to solve this through lookup
tables in each fragment containing entries for every network
path going through a switch [34], posing a scaling issue
for large networks. For example, on a k-ary Fat-Tree, each
edge switch needs to store information about k3 · (k − 1)/8

paths (it has k/2 options for each of the aggregate and core
switches, k−1 for the aggregate switch on the way down and
another k/2 for the last edge switch). This means that even for
moderately sized networks such as k = 28, we would require
information for about 74 thousand paths, leaving less memory
for the sketch itself and undermining the original purpose of
the disaggregation.

In contrast, in per-row disaggregation (Figure 3b), each node
hosts a single row in each fragment, occupying all sketch-
allocated memory. Each fragment is then equivalent to an
independent sketch row, so they can function in isolation, and
there is no need for a lookup table as with per-column aggre-
gation. Note that, unlike standard sketches, the differences in
row sizes due to memory lead to an “irregular” shaped matrix,
which makes it harder to aggregate the results into a single
accurate estimate.

To illustrate the disaggregation overheads, we implemented
state-of-the-art per-row (DISCO [15]) and per-column (Dis-
tributed Sketch [34], lookup table excluded from cost) disag-
gregated sketches on a programmable Tofino switch [58]. Fig-
ure 5 presents these overheads, comparing the total resources
required along a path with those of a traditional Count-Sketch.

While per-row disaggregation generally offers better re-
source efficiency than per-column, producing accurate esti-
mates from this kind of data structure is particularly chal-
lenging when the switches differ significantly in the memory
amount and traffic volume.

Before we describe our solution, we discuss the main
challenges of disaggregation.

Challenge 1: Nodes across the network can have varying
resources, a result of deploying distinct in-network functions at
different switches and possibly other causes of switch hetero-
geneity. Some functions, such as security mechanisms, may
be more suitably deployed at switches near endpoints [62],
[65], [69], while others fit better within the network core [60].
This diversity leads to a heterogeneous use of memory, ruling
out per-column disaggregation due to the high computational
overhead and substantial memory requirements for stateful
per-flow counter allocation. Per-row disaggregation in highly
heterogeneous deployments can experience accuracy degrada-
tion, where tiny fragments introduce significant errors to the
composite sketch. Alternatively, these fragments become es-
sentially negligible when assigned an importance proportional
to their relatively high error.

Challenge 2: Traffic volume can vary significantly across
nodes, stemming from the design of datacenter networks
and their traffic patterns. For example, the Fat-Tree topology
facilitates massive multi-path routing [2], yet despite load-
balancing efforts, imbalances persist [3], [33], [43], [44], [66].
Studies have shown that much traffic remains local, with only
a fraction traversing the entire datacenter [61]. Consequently,
switches near end-hosts experience higher traffic volumes than
those at the core, affecting the accuracy of sketch fragments
under heavy loads.

update

Cells

update

update

R
ow

s

Flow
q

update

update

(a) Per-column disaggregation. Fragments host full-depth sketches.

update

update

update

Flow
q

update

update

(b) Per-row disaggregation. Fragments host one row each.
Fig. 3: Visualization of sketch disaggregation directions.

A B C D

Fig. 4: A Fat-Tree Topology. Packets traverse 1 (e.g., A-B), 3
(e.g., A.C), or 5 (e.g., A-D) switches.

SRAM Hash Dist. sALU0%

20%

40%

Fo
ot

pr
in

ts

[S
um

 o
ve

r P
at

h]

F F FF1
F2
F3
F4
F5

+0%

F1
F2
F3
F4
F5

+400%

F1
F2
F3
F4
F5

+400%

F1
F2
F3
F4
F5

+0%

F1
F2
F3
F4
F5

+69%

F1
F2
F3
F4
F5

+0%

Aggregated Per-column Per-row

Fig. 5: The disaggregation direction has a significant impact on
computational resources. Shown here are full-path footprints
in a Tofino programmable switch, split per switch.

1 hop 3 hops5 hops
Path length

0%
20%
40%
60%
80%

100%

Ac
cu

ra
cy

Fig. 6: Path-lengths’ im-
pact on per-row disag-
gregation.

Challenge 3: The path lengths of
different flows vary, influenced by
the datacenter’s network topology
and traffic distribution. While some
traffic remains local, affecting only
a few nodes, other flows span across
the network. This variance means
that some traffic benefits from more
extensive observation by multiple
fragments, whereas others do not.
For flows traversing only a single
fragment, the accuracy degradation is akin to using a one-row
sketch, which can yield significant inaccuracy. To demonstrate
this effect, we deploy DISCO, a per-row disaggregated count
sketch, in a Fat-Tree topology using the same experimental
parameters as further down in Section VI-A. We show a
breakdown of the per-path-length’s impact on heavy hitter
detection in Figure 6. Notice the significant impact that the
path length has on the estimation accuracy, with queries
regarding single-hop flows being highly inaccurate.

In the following section, we introduce a general technique
that can be used to deploy per-row disaggregated versions of
sketches to achieve highly accurate estimations.

IV. SPATIOTEMPORAL DISAGGREGATION
Here, we introduce our spatiotemporal disaggregation solu-

tion for resource-scarce sketch disaggregation.
In heterogeneous network environments, where nodes differ

in resource capacity and traffic load, sketch accuracy can be
significantly compromised due to smaller and/or overloaded
fragments that introduce substantial estimation errors. In some
cases, it may be more effective to entirely disregard these
less reliable fragments and instead rely on the fewer, larger
fragments along the network path. This is contrary to our goal
of utilizing resource gaps and hints at a deeper issue with
inefficient resource leverage.

An appealing solution is flow-level sampling, where frag-
ments track a subset of flows whose size is determined by the
fragment’s memory and expected traffic load. Larger or less
loaded fragments can handle more flows, while ‘congested’
fragments require more restrictive sampling. This approach
allows even small fragments to provide useful insights on
the flows that they track while larger fragments provide a
more complete flow coverage. However, naive sampling risks
leaving some flows untracked when all their on-path fragments
fail to sample them. Additionally, it introduces inconsistent
measurement inaccuracies, with some flows favored over oth-
ers even when they traverse the same path. This inconsistency
can undermine the overall reliability of the sketch.

To mitigate this unreliability, we propose a novel temporal
sampling technique where a subset of flows are actively
monitored at a time during dynamically defined periods. This
way, we optimize resource utilization and accuracy while
ensuring each fragment provides equal coverage for all flows.

We start with a brief overview of our solution, followed
by a more detailed description in subsequent sections. Please
refer to Figure 7 for a visual overview of our terminology.

a) Subepoching (§IV-A): : Each fragment divides its
sketching epoch into n subepochs, where n is chosen per frag-
ment. A flow is only monitored during one subepoch in each
on-path fragment, hence a fragment only tracks approximately
1
n of the flows at a time. Counters are exported and reset after
each subepoch to allow for central querying. We elaborate on
subepoching in Section IV-A.

b) Error Equalization (§IV-B): : A network-wide error
target is chosen, which is used to homogenize errors across
fragments to facilitate network-wide querying. Fragments ac-
complish this by estimating their local errors at the end of

Query Window [Epoch granularity]

Fragment

Epoch Subepochs

Fragment

Fragment

3-hop
path

Time

Fig. 7: Sketching epochs are divided into subepochs. Frag-
ments are single-row sketches residing on different switches.
Queries are executed against composite sketches, comprising
all relevant subepoch records.

Epoch

Time

P
at

h

flowID

Hop 1

Hop 2

Hop 3

Fig. 8: Flows map into one subepoch per epoch in each hop,
leading to temporal sampling.

each epoch and using this estimation to adjust the number of
subepochs for the upcoming epoch. This way, all fragments
aim to deliver similar error bounds in the upcoming epoch.
We elaborate on error equalization in Section IV-B.

c) Central Queries (§IV-C): : We consider queries that
analyze the traffic in one or several adjacent sketching epochs.
These queries are executed against a specific key (e.g., a
network flow, port, or host) or the aggregate network (e.g., in
entropy estimation). The exact supported queries depend on
the capabilities of the deployed sketch that is being disaggre-
gated. At query time, collected data from relevant fragments
are used to compile a virtual composite sketch that covers
the queried data streams. We elaborate on composite sketch
compilation and querying in Section IV-C.

A. Subepoching
We now provide a detailed description of subepoching,

which is the foundation of our temporal sampling technique.
For ease of exposition, we first assume that all flows follow
the same path length; in Section IV-D, we discuss optimization
that improves the accuracy when the path lengths differ.

Sketch fragments dynamically divide their epochs into a
power-of-two number of subepochs (n) so that n = 2x for
some x ∈ N. Specifically, during epoch E, each fragment
F divides the global epoch duration into nF

E equal-sized
subepochs. To simplify the notation, we will from now on omit
the F superscript from variables when there is no fragment
ambiguity. For simplicity and efficiency of implementation,
we hereafter assume that n is a power of two.

Subepoching allows fragments to perform temporal flow-
level sampling while simultaneously guaranteeing flow
queryability within each query window. This is achieved by
mapping each flow to one subepoch per fragment in each
epoch, resulting in each subepoch monitoring a distinct subset
of flows. We visualize this in Figure 8. Subepoch mapping for
epoch E is achieved through a fragment-specific hash function
sE : q → {0, 1 . . . , nE − 1}, where q is the set of flows that
traverse the fragment during a subepoch. That is, each flow q
is monitored within subepoch sE(q).

A subepoch record is generated and exported at the end of
each subepoch, containing all information required to centrally
query the data stream (see details in Section IV-C).

While initiating a new epoch, fragments individually replace
their hash functions to prevent persistent collisions. Addi-
tionally, the number of subepochs n is recomputed based on
fragments’ estimated performances, to equalize the network-
wide error bounds.

B. Error Equalization
In most cases, sketches provide accuracy guarantees based

on an analysis in which a basic data structure (e.g., a sketch
row in count min and count sketches) provides the desired
precision with a constant probability (e.g., 3/4). Merging the
estimates of independent repetition of this structure (e.g.,
using min in the Count-Min sketch or median in the Count
Sketch) then amplifies the success probability as desired. For
simplicity, and because we find it effective, we follow the
same rationale – we aim for different fragments to yield
estimates with similar errors, allowing us to amplify the
success probability through merging.

With this in mind, we consider the Count-Min and Count
Sketches as two examples. The standard analysis of the Count-
Min sketch looks at the expected noise that other flows
impose onto the queried flow’s counter. Assuming that the
hash function is pairwise independent, any other flow increases
the counter with probability 1/w, i.e., the expected noise is

bounded by
∑|q|

k=1 fk
w . By Markov’s inequality, this gives

Pr

[
f̂k − fk ≥ 4

∑|q|
k=1 fk
w

]
≤ 1

4
. (1)

Similarly, following the standard analysis of Count
Sketch [17], [46], each fragment of width w has a frequency
estimate f̂k for every flow qk ∈ q with expectation fk and

variance at most
∑|q|

k=1 f2
k

w . Using Chebyshev’s inequality, this
implies that:

Pr

|f̂k − fk| ≥ 2

√∑|q|
k=1 f

2
k

w

 ≤ 1

4
. (2)

Therefore, based on the switch’s available space, we aim
to size the subepochs such that the noise bound roughly
matches a target quantity ρ, which we loosely refer to as a
fragment’s probabilistic error bound (PEB). The magnitude of

a fragment’s estimation errors is linked to ρ, and based on the
above, we set:

ρ =


√∑|q|

k=1 f2
k

w , if CS∑|q|
k=1 fk
w , if CMS

. (3)

To roughly equalize the error across fragments, we define a
network-wide target PEB ρtarget , representing the desired PEB
in all fragments’ subepoch records. Each switch, knowing its
space constraints, then attempts to meet this target.

For our purposes, we can think of sketch fragments as
singe-row sketches. Given that sketches aim to estimate the
underlying frequency vector f , we can use the fragment’s
counters ci ∈ c as an approximation of the frequency vector.
We can then modify Equation 3 to calculate an estimated
subepoch PEB ρ̂ ≈ ρ from the sketch counters:

ρ̂ =


√∑w

i=1 c2i
w , if CS∑w

i=1 ci
w , if CMS

. (4)

Let ρ̂E,s be the estimated PEB from subepoch s in epoch
E. An epoch’s average error bound is then estimated as:

ρ̂E =

∑nE−1
s=0 ρ̂E,s

nE
. (5)

We aim to equalize ρ̂E across the network, so that
ρ̂E ≈ ρtarget for all fragments and epochs. Recall that
n ≈ FlowSamplingRate−1 within each subepoch, which leads
to ρ ∝ 1

n . Further, we are assuming that traffic patterns are rel-
atively stable between consecutive epochs, hence ρE+1 ≈ ρ̂E
for each epoch E. Following these assumptions, fragments
autonomously adjust n to approach ρtarget :

nE+1 =


2nE , if ρ̂E > 2ρtarget

max(1, nE

2), if ρ̂E <
ρtarget

2

nE , otherwise
. (6)

ρ−1 is not defined, so we initiate the first epoch with a likely
suboptimal n0 = 1. We recommend computing a moving
nE+1 as we do in Equation 6 instead of independently calcu-

lating it (using the equation nE+1 = 2
⌊max

(
0,log2

ρ̂E
ρtarget

)
⌉) to

reduce the effect of ρ̂ outliers. Calculating a moving n showed
a slight empirical advantage in our simulations.

a) ρtarget Selection: One might be tempted to set an
extremely low ρtarget for the network, to increase the esti-
mation accuracies. Unfortunately, ρtarget only states the error
bound for queries within a single subepoch, but we want to
optimize for the estimation accuracy during a query window,
i.e., a set of contiguous epochs. The epoch estimation is, in
cases of temporal blind spots, an extrapolation from the mean
subepoch estimation and is therefore highly dependent on how
representative the tracked flow pattern is to the full epoch.
Therefore, we want to minimize the final estimation error
ϵ = ϵsubepoch + ϵextrapolation ≈ ρ + ϵextrapolation . Unfortu-
nately, n ∝∼ 1

ρtarget
, i.e., decreasing ρtarget generally increases

fragments’ n, leading to shorter flow-tracking time windows
and subsequently increased extrapolation errors ϵextrapolation .

The extrapolation accuracy is a function of n and the
distribution of inter-packet arrival times for flows (i.e., flow
burstiness patterns). For instance, the frequency estimations
for highly bursty flows are unlikely to be accurately estimated
from a sampled time window, while uniformly transmitting
flows can be accurately extrapolated. ρtarget should be selected
following an analysis of a network’s typical traffic patterns.

This error equalization results in all fragments’ subepoch
records having similar expected error bounds, regardless of
size or traffic load, facilitating accurate queries.

b) The UnivMon Sketch: UnivMon has a data structure
that consist of multiple count sketches called ‘levels’. Accord-
ing to the above, we set each fragment to contain all levels,
all of which have the same width (as in the paper [53]) and
the same subepoch hash.

C. Central Querying
Each fragment exports a subepoch record R at the end of

each subepoch, which is sent for central collection.
A record is defined as R = (F,E, S, n, c,h) where:
• F is the fragment that the record is from,
• E is the epoch number,
• S is the subepoch number,
• n is the number of subepochs that F used in E,
• c are the counters from the end of the subepoch,
• h are the hash functions used during sketching.

To refer to a field, e.g., F , inside of a record R, we use R.F .
Each of these records R is added to the set of collected records
R which forms the basis for network-wide queries.

A key-based query is defined as Q = (θ, τ, κ) where:
• θ is the query type (e.g., flow frequency or data volume),
• τ = [Tstart, Tend) is the query time window,
• κ is the queried key (e.g., a flow).

The set of supported query types and keys depends on the
capabilities of the deployed sketches.

Queried time windows are at the granularity of sketching
epochs so that Q.τ aligns with a set of contiguous epochs EQ.
Each epoch is queried individually to yield a list of per-epoch
query outputs OE ∈ O for each E ∈ EQ. These per-epoch
outputs are merged to craft a final (per-key) query output OQ,
for instance through OQ = Sum(O) or OQ = Average(O)
depending on the query.
Each epoch E is queried as follows:

a) Step 1 - Retrieve relevant records:: Let RE
Q be the set

of subepoch records that form the base for query Q in epoch
E. The specific set depends on the query, but all records have
E as their epoch number.

Many queries, such as queries against a specific flow Q.κ
require knowledge of the network path of the flow Pκ. We
assume that the path for flows is known or computable.
This assumption is standard and can be achieved, e.g., if
ECMP-based (hash-based) load balancing is used since we
can recompute the hashes [30]. This path is used to restrict
RE

Q so that R.F ∈ Pκ.

F1
F2
F3
F4
F5

1 2

R2

R1

R5

R4

R3

Fig. 9: Centralized querying process. (1) Relevant records
from on-path fragments are retrieved, with subepochs that
sampled the target key during the query window selected.
(2) Subepochs and estimations are normalized and merged to
generate the query result.

Further, only records from subepochs that sampled κ are
selected. This is done through the key-to-subepoch mapping
hash function sFE(κ), which is computed for each fragment
F ∈ Pκ, so that R.S = sFE(κ).

We now have a set RE
Q containing all records within E that

form the basis for query Q.
b) Step 2 - Query the Records:: All records are

normalized into equal-length subepochs to facilitate querying
of varying-length subepoch records. For this, we find nm,
the largest n for any record in RE

Q, which is the number of
subepochs that records should normalize into.

Each record R ∈ RE
Q is queried individually as single-row

sketches to retrieve their raw estimations OR. For instance,
in CMS, OR = ci ∈ R.c, where i = hc(κ) and hc ∈ R.h
is the indexing hash function used at sketching-time. These
estimations are divided into NR = nm

R.n smaller estimations
O′

R = OR

NR
, one per normalized subepoch that overlap with

the record’s subepoch.
To estimate the frequency for a key (e.g., flow) within an

epoch, we first estimate its statistic within each normalized
subepoch. Namely, for a given normalized subepoch S′, we
consider all records the key was mapped to that include S′.

For example, consider a case where the queried key tra-
versed five fragments and is recorded in subepoch records
R1, . . . , R5 as shown in Figure 9 Step 1. In particular, this
means that nm = 8 and we thus have eight normalized
subepochs. The estimate in the first two normalized subepochs
is then based on the normalized estimations O′

R1
, O′

R2
, O′

R4
,

the third is based on just O′
R1

and O′
R4

, etc. The method
for combining the estimates from each normalized subepoch
depends on the sketch itself (e.g., the minimum of their
estimates in Count-Min, or the median in Count Sketch).

We note that there can be some normalized subepochs
without any estimates (that is, a temporal ‘blind spot’ for this
key). In this case, we use the mean of the estimates of the other
normalized subepochs. For example, in Figure 9 Step 2, since
we have no measurements of the key size during the sixth
normalized subepoch, we use the average of the other seven
normalized subepochs’ estimates. These temporal blind spots
are the cause of extrapolation errors when the mean is a poor
estimator for the key’s true statistic during this time window.

Finally, the sum of the normalized subepoch estimates
serves as a cumulative estimate over the entire epoch and is
the epoch’s output.
D. Enhanced Single-hop Sketching

As previously discussed in Section III and shown in Fig-
ure 6, the accuracy of flow estimations is closely tied to
the number of fragments traversed (i.e., to the path length).
Flows that traverse a single fragment, notably, have much
worse performance, as they do not obtain the benefit from
multiple estimates, and this is especially damaging when that
fragment contains relatively few counters. We, therefore, offer
a mitigation strategy that aims to enhance the accuracy of flows
that traverse just a single network hop, with only mild costs in
accuracy for other flows. For this, we assume that fragments
can identify single-hop flows at sketching-time1.

We arrange that these flows are monitored not in one, but
two subepochs within each epoch. This is done by modifying
the key-to-subepoch mapping to compute the two subepochs
SE,0 = sE(κ) and SE,1 = sE(q) +

nE

2 mod nE . Thus, for
nE ≥ 2, single-hop flows are monitored during two subepochs,
one in the first half and one in the second half of the epoch.
If nE = 1, then this mitigation technique is not applicable but
also suggests that the single-hop fragment is large enough to
deliver suitably accurate estimations on its own. Note that this
technique requires a query to use two subepoch records from
each queried epoch for such flows.

Although this mitigation technique enhances the accuracy of
single-hop flows, it simultaneously imposes (approximately)
twice as many counter increments for those same flows,
which increases the fragment’s ρ. Therefore, we expect slightly
increased errors in queries against other flows. We evaluate this
effect in Section VI-D.

V. IMPLEMENTATION
We provide two open-source implementations of DiSketch:

a modular software simulator and a hardware prototype. The
simulator supports flexible experimentation with disaggre-
gated sketches across diverse topologies and configurations.
The hardware prototype targets P4-programmable switches on
commodity hardware, demonstrating feasibility at line rates of
multiple terabits per second with minimal resource overheads.
Spatiotemporal disaggregation is optimized for the constraints
of the Protocol-Independent Switch Architecture (PISA) [10],
[11], enabling all packet processing to remain in the high-
speed data plane.
A. Hardware Prototype

To demonstrate the hardware efficiency of our approach,
we implement DiSketch on a P4-programmable switch. This
implementation is verified on a Tofino2 switch, capable of
6.4Tbps network traffic. Our prototype is lightweight, com-
prising 850 lines of code split between the P4 data plane and
the Python control plane.

Subepoch membership is computed entirely in the data
plane using a bitslice of the switch-internal timestamp.

1Single-hop flows can be identified, for example, when a switch is neither
receiving nor sending a packet to another switch, in cases where all network
switches contain a sketching fragment.

0 1 1 1 1 0 1 0 0 1 1 0 1 0 0 1
0123456789101112131415

subepoch: 13epoch
Fig. 10: Inferring the subepoch from a timestamp.

SketchingSubepoch
Mapping

Counters

Subepoch
Identification

Epoch
Transition

Epoch
Configuration

Write Read

Emit
Packet

Export
Record

ASIC

CPU

Fig. 11: An overview of the on-switch placement of DiSketch
components. The high-speed ASIC does online sketching,
while the slower on-switch CPU handles epoch transitions.

Assuming epoch lengths and subepoch counts are pow-
ers of two, the intra-epoch offset is encoded in the lower
log2(epoch_length) bits of the timestamp (Figure 10). The
currently active subepoch corresponds to the highest log2(n)
bits of this intra-epoch window, where n is the number of
subepochs in the fragment.

To determine whether a flow is active in the current sub-
epoch, we hash the flow ID using a native CRC8 primitive
and XOR the result with the intra-epoch timestamp. If the top
log2(n) bits of the result are all zero, the flow is selected
for tracking. This bitwise match is implemented using a
single-entry ternary match table, where the bitmask encodes
the current value of n through its number of leading ones.
This design supports low-latency reconfiguration and incurs
minimal table space.

Epoch configuration is too complex to adhere to the strict
PISA requirements and is deferred to the local control plane
and invoked only at epoch boundaries, as shown in Figure 11.
To avoid counter resets, we track deltas: the controller queries
raw counter values and subtracts the previously recorded
state to infer per-subepoch activity. The only controller-ASIC
communications required are counter exports and occasional
bitmask updates when the number of subepochs changes.

Figure 12 shows the data plane resource overheads of
DiSketch when applied to a single-row disaggregated Count-
Min Sketch with 131K counters. The dominant resource,
SRAM, sees a negligible increase of just 0.1%. Most of the
added cost comes from the hash-based subepoch selection
logic, which introduces modest overheads to hash distribution
units, TCAM, and ternary result buses. Overall, the impact on
hardware resources remains low and is well justified by the
substantial accuracy improvements enabled by spatiotemporal
sampling.

VI. EVALUATION
Topologies. We simulate two smaller data center topologies:

a k = 2 Fat-Tree network with four core switches (20 switches

0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
Resource Usage [%]

sALU
Hash Bit

Hash Dist
VLIW Instr.

Map RAM
SRAM

Exact Xbar
Exact Res. Bus

TCAM
Tern. Res. Xbar
Tern. Res. Bus

2.1% 2.1%
1.1% 1.3%
1.4% +1.4% 2.8%
0.5%+0.8% 1.3%
5.7% 5.7%
3.9% 4.0%
0.6% 0.9%
1.0% +0.6% 1.6%

0.3%
0.1%

0.5% +1.1% 1.6%
CMS
DiSketch Overhead

Fig. 12: Hardware resource cost of a single-row disaggregated
CMS with and without DiSketch enhancements.

in total), and a SpineLeaf network (12 switches in total)2.
In these networks, we evaluate two switch memory size

distributions: Homogeneous and Heterogeneous.
The heterogeneous scenario allocates pseudo-random memory
sizes for per-switch sketches. These memories are generated
with a pre-defined average memory size and inter-switch het-
erogeneity, designed to correspond with a selected heterogene-
ity level3. The generated memories are randomly distributed
to switches, not considering their topological position. As a
default, we use an arbitrary heterogeneity level of gini = 0.4,
resulting in notable memory size variation between switches.
An example memory distribution for five switches with gini =
0.4 can be: [10%, 30%, 100%, 160%, 200%], i.e., fragment-
sizes ranging from 10% to 200% of the base memory size.
The homogeneous scenario allocates exactly the base memory
size for all switches, resulting in a heterogeneity level of 0.

Sketches. We are evaluating spatiotemporally disaggregated
instances of Count Sketch (CS), Count-Min Sketch (CMS),
and UnivMon (UM)4. To simplify the discussion, we name
applied versions of our solution as DiSketches (Disaggregated
Sketches), i.e., DiSketch-CS, DiSketch-CMS, and DiSketch-
UM. For comparison, we also evaluate aggregated sketches
on core switches in the network, and DISCO [15] deployed
network-wide. All sketches/fragments utilize all available
memory of their respective switches.

Traces. In this evaluation, we use the real-world CAIDA-
NYC Equinix packet trace [16], recorded at a backbone link in
2019. If nothing else is stated, then we replay ∼5 seconds of
traffic (∼2M packets, covering ∼200K flows). We only have
access to traffic recorded at a single network link, and we
map IP addresses in traffic uniformly at random to hosts in
our network to simulate network-wide communication, while
omitting flows where both the source and destination map to
the same host.

DiSketch converges on an optimal epoch configuration over
time, and we split the query window into arbitrary 32 epochs
to allow DiSketch to converge. We do, however, include the

2The simulated networks are small in size due to computational restrictions.
For context, a single data point in our experiments requires nearly a full hour
of simulation time. We have simulated topologies up to approximately double
these sizes, without any noticeable impact on the results.

3The gini inequality index is used to generate random memory distributions.
4We deploy UnivMon with 16 levels, which is approximately the second

logarithm of the expected number of flows.

 16 kB 64 kB 256 kB 1 MB
Base Memory

10 1

101

103

Homogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Homogeneous SpineLeaf

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous SpineLeaf
Ro

ot
 M

ea
n

Sq
ua

re
d

Er
ro

r Aggregated DISCO DiSketch

(a) Evaluation results for a Count Sketch.

 16 kB 64 kB 256 kB 1 MB
Base Memory

10 1

102

Homogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Homogeneous SpineLeaf

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous SpineLeaf

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

(b) Evaluation results for a Count-Min Sketch.

 16 kB 64 kB 256 kB 1 MB
Base Memory

101

103

Homogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Homogeneous SpineLeaf

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous Fat-Tree

 16 kB 64 kB 256 kB 1 MB
Base Memory

Heterogeneous SpineLeaf

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r

(c) Evaluation results for UnivMon.

Fig. 13: Frequency estimation errors of sketches for 5-hop flows at various memory sizes. Scenarios are combinations of the
Fat-Tree and SpineLeaf topologies, either with homogeneous or heterogeneous switch memory sizes.

suboptimal initial epochs in the query window.
A. Frequency Estimation Errors

In Figure 13, we present the accuracy of flow frequency
estimation, a common sketch query [17], [23], [53]. Here, we
query all flows that were tracked during the experiment in
terms of their number of transmitted packets and define the
query error as the absolute difference from the ground truth
number of packets. We use the aforementioned experimental
setup and replay traffic across the entire network topology.
In this figure, only flows with full-length network paths are
queried, to ensure that all evaluated flows would have traversed
an aggregated sketch residing on core switches. We evaluate
per-path-length performance later in Section VI-D.

This evaluation demonstrates a clear pattern, where our so-
lution consistently outperforms both aggregated deployments
and DISCO-disaggregated deployments of all three example
sketches. This pattern holds for homogeneous and heteroge-
neous deployments in both of the evaluated network topolo-
gies. As an example, in a heterogeneous Fat-Tree deployment,
DiSketch-CS delivers RMSE < 1 using on average 128KB
of per-switch memory, which is approximately 25% of the
512KB that DISCO requires. All aggregated sketches failed to
deliver this accuracy under the evaluated memory constraints.
Alternatively, using the same 512KB of average per-switch

memory, the aggregated CS, DISCO-CS, and DiSketch-CS
deliver RMSE of 460, 0.8, and 0.09 respectively. These
patterns hold when the sketching epoch, or the underlying
traffic volumes, increase. We see similar patterns for all eval-
uated sketches and network topologies. This does, however,
only investigate flows with full-length network paths, at fixed
heterogeneity levels. We will demonstrate the effect of these
parameters in sections VI-C and VI-D.

Takeaway: DiSketch consistently and significantly en-
hances the memory-vs-accuracy tradeoff for frequency esti-
mation, either increasing the accuracy by nearly an order of
magnitude or reducing the required memory by approximately
75% depending on the sketching environment.

B. Entropy Estimation Errors
In Figure 14, we present the experimental results of es-

timating the network-wide entropy of IP addresses. This is
done through UnivMon, according to the algorithm outlined
in their paper [53]. Given that disaggregated sketches far
outperform aggregated sketches, we here compare DISCO
only with DiSketch. We therefore also remove the full-path-
length limitation, and base these evaluations on all network
traffic. We present only the heterogeneous Fat-Tree scenario
here, but the results are similar in all evaluated scenarios.

16KB 32KB 64KB
128KB

256KB
512KB 1MB

10 3

10 2

10 1

100

Category
DiSketch
DISCO

Base MemoryRe
la

tiv
e

En
tro

py
 E

rro
r

Fig. 14: The error in entropy estimation of UnivMon in a Fat-
Tree network with a random memory distribution.

Similar to the previous section, we note a consistent and
significant error reduction through our solution, and DiSketch-
UM delivers a similar entropy estimation accuracy as DISCO-
UM using half as much memory. Alternatively, DiSketch-UM
lowers the errors by approximately 50% across tests.

Takeaway: Our solution halves the amount of memory
required for entropy estimation, or halves the errors while
keeping the memory unchanged.

C. Heterogeneity Effects
Here, we evaluate DiSketch in a wide range of heteroge-

neous environments (i.e., where the traffic load and memory
sizes vary between switches). For simplicity, we again focus
on the frequency estimation accuracy of DISCO-CS and
DiSketch-CS.

Experimental Setup. As opposed to the prior experiment,
this experiment simulates a single 5-hop network path as
shown in Figure 16. The network load heterogeneity de-
pends on various factors, including the network topology,
load balancing, node positions, and the traffic patterns of
connected hosts. By simulating a single path, we gain precise
control of the per-switch traffic volumes and can set the
heterogeneity levels freely. Traffic on other semi-overlapping
paths is emulated as per-switch background traffic.

We vary the memory and traffic load heterogeneity of the
hops, according to the coefficient of variation (CoV, i.e.,
the relative standard deviation). Heterogeneity levels range
from perfectly homogeneous (CoV = 0) to significantly
heterogeneous (CoV = 1.8). The total amount of background
traffic (259K packets) and the number of on-path counters
(5120) is fixed across tests5. Two pseudo-random lists of
5 integers are generated for each test, one with the per-
hop load, and the other with the per-fragment memory size,
so that both lists adhere to the experimental parameters.
For instance, an example background traffic distribution with
CoV ≈ 1.5 is [204189(78.7%), 18364(7.1%), 29(0.01%),
2265(0.9%), 34675(13.4%)]. The generated loads and widths
are independent and are randomly distributed to the nodes.

There are six different packet streams: five background
traffic streams, each passing through one switch, and one

5The small scale in these simulations allowed us to evaluate numerous
heterogeneity settings within a reasonable time, and yields the same general
pattern as full-scale heterogeneity simulations.

evaluation stream that traverses the entire path. The aforemen-
tioned CAIDA packet trace is used as the basis of all network
traffic, and we map IP addresses at random into the traffic
streams. Packets in each stream are replayed chronologically
in the order they appear in the packet trace. Approximately
300 flows comprising approximately 1% of the total traffic
are replayed across the full path, from sender to receiver, and
are used for evaluation. The remaining 99% of traffic only
crosses the individual nodes (see Load in Figure 16). The
experimental results are only based on flows traversing all five
of these fragments.

The experimental results are provided in terms of the
Normalized Root Mean Squared Error (NRMSE) [6] between
the estimated frequencies and the known ground truth, and
is normalized by the total number of packets to provide a
dimensionless measure of error. Smaller values indicate better
performance.

Results. The average results following multiple simulations
are presented in Figure 15 for all heterogeneity combinations.
To further help illustrate the effect of DiSketch, we present
the difference in NRMSE between DiSketch and DISCO in
the rightmost heatmap.

There are several patterns in this data, including an apparent
direct link between the width/load heterogeneity and the
sketching accuracy. The width heterogeneity pattern appears
valid, in that we expect increased heterogeneity in per-switch
memory to reduce the overall sketching accuracy in the net-
work. This effect is intuitively explained by the theory behind
sketches, in that a single row on its own might be inaccurate,
but combining several rows boosts the accuracy super-linearly.
A high width heterogeneity means that a few switches have
most of the memory, leading to fewer suitably accurate rows,
degrading performance when the total memory remains fixed.
However, the apparent beneficial effect of load heterogeneity
on the sketching accuracy is a likely experimental artifact.
Recall that we are only evaluating the accuracy of flows
traversing the full path, and the total amount of background
traffic remains constant. Therefore, as we increase the load
heterogeneity of the background traffic, we condense it into
fewer switches, leading to an accuracy increase for most on-
path fragments. This effect might not hold if those background
flows were accounted for in the evaluation.

We highlight the right-most heatmap, which shows the accu-
racy improvement as you replace DISCO with DiSketch. There
is a consistent accuracy enhancement in every heterogeneity
combination, with greater gains as the heterogeneity levels
increase. This is expected, as DISCO is heterogeneity unaware,
while DiSketch fragments mitigate the heterogeneity penalties
by autonomously reconfiguring themselves to equalize the
network-wide PEB. Note that the improvement is presented
in terms of the absolute change in log10 NRMSE, so a value
of 1 would signal an order of magnitude reduction in NRMSE.

Takeaway: DiSketch outperforms DISCO in all hetero-
geneity combinations tested. This is especially evident as the
heterogeneity levels increase, demonstrating the effectiveness
of network-wide PEB equalization.

0.0 0.3 0.6 0.9 1.2 1.5 1.8

1.
8

1.
5

1.
2

0.
9

0.
6

0.
3

0.
0

Lo
ad

 H
et

er
og

en
ei

ty
[C

oe
ffi

cie
nt

 o
f V

ar
ia

tio
n]

-5.7 -5.6 -5.6 -5.4 -5.3 -5.1 -4.7

-5.5 -5.4 -5.4 -5.2 -5.0 -5.0 -4.6

-5.4 -5.3 -5.2 -5.1 -5.0 -4.9 -4.6

-5.3 -5.2 -5.2 -5.0 -4.9 -4.7 -4.5

-5.2 -5.2 -5.0 -5.0 -4.8 -4.7 -4.3

-5.2 -5.1 -5.0 -4.8 -4.7 -4.5 -4.3

-5.2 -5.0 -5.0 -4.8 -4.7 -4.5 -4.3

DiSketch-CS

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Width Heterogeneity [Coefficient of Variation]

1.
8

1.
5

1.
2

0.
9

0.
6

0.
3

0.
0

-5.0 -5.0 -4.9 -4.6 -4.5 -4.3 -4.0

-4.8 -4.7 -4.7 -4.4 -4.4 -4.2 -3.8

-4.8 -4.7 -4.6 -4.4 -4.3 -4.2 -3.8

-4.7 -4.6 -4.6 -4.3 -4.2 -3.9 -3.6

-4.6 -4.6 -4.5 -4.2 -4.1 -3.9 -3.5

-4.6 -4.6 -4.5 -4.2 -4.1 -3.9 -3.4

-4.6 -4.5 -4.4 -4.3 -4.0 -3.8 -3.4

DISCO-CS

0.0 0.3 0.6 0.9 1.2 1.5 1.8

1.
8

1.
5

1.
2

0.
9

0.
6

0.
3

0.
0

0.7 0.7 0.7 0.8 0.8 0.8 0.8

0.6 0.7 0.7 0.7 0.7 0.7 0.8

0.6 0.7 0.7 0.7 0.7 0.8 0.8

0.6 0.7 0.7 0.7 0.7 0.9 0.9

0.6 0.7 0.6 0.7 0.7 0.7 0.8

0.6 0.6 0.5 0.6 0.6 0.7 0.8

0.6 0.5 0.5 0.6 0.6 0.7 0.9

Improvement

6

5

4

3

lo
g 1

0
NR

M
SE

1

0

1

lo
g 1

0
NR

M
SE

Fig. 15: Heterogeneity’s impact on frequency estimation, showing the log10(NRMSE) at various heterogeneity combinations.
The right-most heatmap shows the log10(NRMSE) improvement over DISCO gained through spatiotemporal disaggregation.

Sender ReceiverLoad 1

F1 F2 F3 F4 F5

Load 2 Load 3 Load 4 Load 5

Fig. 16: Experimental Setup in Heterogeneity Tests.

1 Hop 3 Hops 5 Hops
Path Length

102

103

8KB

1 Hop 3 Hops 5 Hops
Path Length

10 1

100

101

102
1MB

Ro
ot

 M
ea

n
Sq

ua
re

d
Er

ro
r DiSketch - Mitigated DiSketch - Basic DISCO

Fig. 17: The path lengths’ impact on frequency estimation
accuracy for Count Sketch. DiSketch is evaluated both with
and without the single-hop mitigation strategy.

D. Path Length Effects
Here, we evaluate how the path length impacts the accuracy

of DiSketch-CS and DISCO-CS. The heterogeneous Fat-Tree
scenario from previous sections is reused, and the query results
are grouped according to the path lengths of the queried flows.
For ease of presentation, we only present the experimental
results with the smallest base memory (8KB) and the largest
base memory (1MB) in Figure 17.

As expected, increasing the number of traversed sketching
fragments (i.e., the path length) improves query accuracy
across all disaggregated sketches. This effect is most signifi-
cant when more memory is allocated to sketching, with single-
hop queries experiencing approximately a 50x increase in
errors over 3-hop flows in the 1MB experiments, compared to a
more reasonable 2.8x increase in the 8KB experiments. When
applying the mitigation technique from Section IV-D, errors
for single-hop flows decreases by approximately 24% and 13%
in the 8KB and 1MB tests, respectively. Further, DiSketch
demonstrates a consistent accuracy improvement over DISCO

for all evaluated path lengths. The mitigation results in a
slight error increase for queries of multi-hop flows, due to
the increase in increments from single-hop flows, although the
effect is within one standard deviation in these experiments.

Takeaway: The query accuracy is greatly impacted by
the path length of the underlying flow, and the single-hop
mitigation results in a slight accuracy enhancement for single-
hop flows and a slight accuracy decrease for multi-hop flows.
Accordingly, whether mitigation is worthwhile may depend on
the setting.

VII. DISCUSSION
This section provides a brief discussion of spatiotemporal

disaggregation and proposes future research into the tech-
niques presented in this paper.
Other data structures. This paper presented spatiotemporal
disaggregation when coupled with Count Sketch, Count-Min
Sketch, and UnivMon. However, we expect these ideas to
be useful beyond that and envision that they can be applied
to other sketches (e.g., Bloom filters, and HyperLogLog),
as well as non-sketch data structures. The exact technical
requirements for spatiotemporal disaggregatability, as well as
structure modifications required in each case, are left as future
work. However, non-cumulative estimations likely have to
modify the temporal merging at query time, while the spatial
merging likely follows the row-merging logic of an aggregated
version of the sketch, similar to how we spatially merge Count
Sketch fragments through the median.
Path stability. Some load balancing schemes, such as flowlet
switching [66], frequently alter the path of flows at incred-
ibly short timescales. These techniques result in irregular
and unstable flow paths, impacting the practicality of sketch
disaggregation. For instance, if flow paths change during a
sketching epoch, then portions of the flow increments within
that epoch could end up in different sets of fragments. Without
awareness of these path changes, the estimation accuracies
of the analysis engine could suffer. If the analysis engine
is unaware of such paths, then the estimation accuracies
would suffer. However, it is possible to design disaggregation
techniques that accommodate path changes. Assuming fine-
grained path tracing is already implemented, the analysis

engine could incorporate all fragments traversed during the
epoch into the composite sketch output. Weighting could be
employed based on the duration during which a flow has
traversed each fragment. Developing precise techniques for
sketch-based estimations under changing path conditions is
left as future work.

Alternatively, one could configure the load balancing tech-
niques to only perform re-routing at epoch transitions. This
adjustment would ensure that each sketching epoch contains
the same set of fragments, except in cases of re-routing
triggered by failures. This method could stabilize the path data
within each epoch, improving the consistency and accuracy of
sketch-based monitoring.
Finding an Optimal ρtarget . Spatiotemporal disaggregation is
built around subepoching, where the monitoring epoch is dy-
namically divided into briefer subepochs based on fragments’
PEBs (ρ). However, one critical aspect has not been inves-
tigated: what is the optimal ρtarget? This choice is strongly
influenced by the network characteristics where the sketch is
deployed, including the expected loads, fragment sizes, and
burstiness of flow traffic patterns. Determining a theoretically
optimal ρtarget is beyond the scope of this paper and is left
for future work. However, in our experience, the selection is
relatively forgiving, with any value within a factor of two of
the optimal ρtarget yielding similar performance. Regardless,
this warrants an in-depth theoretical analysis, and experimental
validation to quantify the impact of this choice across diverse
network conditions.

VIII. RELATED WORK
Traditionally, sketches have been deployed aggregated [17],

[23], [53]. Recent interest has shifted towards network-wide
deployments to enhance measurement flexibility [15], [25],
[34], [48], [71], [74].

For example, Zhao et. al., 2021, [74] designed a sketch-
based network-wide telemetry system named LightGuardian.
In their approach, each switch hosts two SuMax sketches:
one actively populated and one being collected. This sup-
ports new sketch measurements, including latency jitter and
packet loss detection, using a probabilistic in-band collection
method to reduce centralized collection costs. Nonetheless,
this system does not address heterogeneous environments,
incurs substantial resource costs, and employs aggregated (i.e.,
non-disaggregated) sketches on each switch.

To our knowledge, the first paper describing the potential of
disaggregated sketches was DISCO [15], published in 2020.
They argued for sketch disaggregation to simplify sketch
deployments in resource-scarce environments. They presented
a basic technique for per-row disaggregation of sketches for
estimating flow size, showing an increased accuracy in heavy
hitter detection. Although promising, they did not investigate
heterogeneous environments, hardware feasibility, or more
complex sketches for tasks unrelated to flow size estimation.

Cornacchia et al., 2021, [25] highlighted the detrimental
effects of traffic patterns on per-row disaggregated sketches,
notably increased hash collisions and accuracy degradation
due to load imbalances. They proposed that sketch fragments

sample a subset of traffic to process, but their algorithm
assumes full in-band knowledge of per-flow paths and frag-
ment dimensions, thus introducing considerable overheads and
limiting deployment flexibility. We believe that their funda-
mental idea is valid, that sampling techniques would lead to
efficient distributed sketching in heterogeneous environments,
but that their imposed assumptions are unreasonable in many
deployments. Hence, we choose not to include this solution
in the evaluation. DiSketch fragments operate autonomously,
without any per-flow knowledge assumptions. We discussed
the issues with these assumptions in Section III.

Gu et al., 2023, [34] proposed per-column disaggregation
as an alternative to per-row disaggregation and discussed how
to handle load imbalances. As outlined in Section III, this
approach faces the challenge of evenly distributing counters
across diverse paths to ensure balanced counter incrementation
relative to fragment sizes. To address this, the authors propose
the use of lookup tables for counter allocation, containing one
entry for every active traffic flow. However, since the number
of sketch cells typically grows sub-linearly to the number of
keys, the inclusion of such a lookup table contradicts this
fundamental design goal. Further, per-column disaggregation
is inefficient in high-performance switching architectures such
as PISA, since per-row computational logic remains dedicated
even for packets where it is not utilized, leading to a high
resource footprint.

Li et al., 2024, [48] addresses the traffic imbalance issue by
proposing a deployment and increment strategy that ensures
load balancing across sketch rows. Their method selectively
deploys rows across the network, supporting a variable number
of rows per fragment. The ingress switch determines the
number of rows each hop should process per packet, inserting
this information as a new header for ingressing packets and
allocating traffic based on hop capacities. However, this places
high burdens on ingress switches, requiring extensive knowl-
edge of network paths and fragment dimensions, and reduces
the MTU of the network through extended packet headers,
risking frame fragmentation and reduced goodput. DiSketches
has none of these issues.

IX. CONCLUSION

We introduced spatiotemporal sketch disaggregation, a
novel sketching scheme for disaggregated streaming analy-
sis. This approach combines spatial and temporal indexing
through subepoching, enabling flexible and heterogeneous
deployments of multiple sketches, as demonstrated with Count
Sketch, Count-Min Sketch, and UnivMon.

Our findings show that spatiotemporal disaggregation signif-
icantly enhances sketch accuracy, reducing estimation errors
by nearly an order of magnitude compared to DISCO, and
by several orders of magnitude over conventional aggregated
sketching methods. These accuracy improvements are es-
pecially pronounced in heterogeneous environments, where
network-wide equalization of probabilistic error bounds allows
fragments of varying loads and sizes to be efficiently queried
together.

REFERENCES

[1] Marcos K. Aguilera, Wojciech Golab, and Mehul A. Shah. A practical
scalable distributed b-tree. Proc. VLDB Endow., 1(1), 2008.

[2] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. ACM SIGCOMM
computer communication review, 38(4):63–74, 2008.

[3] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis
Matus, Rong Pan, Navindra Yadav, et al. Conga: Distributed congestion-
aware load balancing for datacenters. In Proc. of ACM SIGCOMM,
2014.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 20–29,
1996.

[5] Ran Ben Basat, Gil Einziger, Roy Friedman, Marcelo Caggiani Luizelli,
and Erez Waisbard. Volumetric hierarchical heavy hitters. In Proc. of
IEEE MASCOTS, 2018.

[6] Ran Ben Basat, Gil Einziger, Michael Mitzenmacher, and Shay Var-
gaftik. Salsa: self-adjusting lean streaming analytics. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE), pages 864–875.
IEEE, 2021.

[7] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minlan Yu, and Michael Mitzenmacher. PINT: probabilistic
in-band network telemetry. In SIGCOMM ’20, pages 662–680. ACM,
2020.

[8] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of data centers in the wild. In Proc. of SIGCOMM IMC,
2010.

[9] Burton H Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[10] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM CCR, 2014.

[11] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz. For-
warding metamorphosis: Fast programmable match-action processing in
hardware for sdn. ACM SIGCOMM Computer Communication Review,
43(4):99–110, 2013.

[12] Broadcom. Broadcom NetOps. https://academy.
broadcom.com/blog/network-operations/dx-netops/
5-steps-to-get-telemetry-data-in-dx-netops.

[13] Broadcom. Broadcom Tomahawk 5. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm78900-series.

[14] Broadcom. Broadcom Trident 5. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm78800.

[15] Valerio Bruschi, Ran Ben Basat, Zaoxing Liu, Gianni Antichi, Giuseppe
Bianchi, and Michael Mitzenmacher. Discovering the heavy hitters
with disaggregated sketches. In Proceedings of the 16th International
Conference on emerging Networking EXperiments and Technologies,
pages 536–537, 2020.

[16] CAIDA. Passive monitor: equinix-nyc, 2019.
[17] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding

frequent items in data streams. In Proc. of ICALP, 2002.
[18] Peiqing Chen, Dong Chen, Lingxiao Zheng, Jizhou Li, and Tong Yang.

Out of many we are one: Measuring item batch with clock-sketch. In
Proceedings of the 2021 International Conference on Management of
Data, pages 261–273, 2021.

[19] Peiqing Chen, Yuhan Wu, Tong Yang, Junchen Jiang, and Zaoxing
Liu. Precise error estimation for sketch-based flow measurement. In
Proceedings of the 21st ACM Internet Measurement Conference, pages
113–121, 2021.

[20] Peter Clifford and Ioana Cosma. A simple sketching algorithm for
entropy estimation over streaming data. In Artificial Intelligence and
Statistics, pages 196–206. PMLR, 2013.

[21] Edith Cohen, Rasmus Pagh, and David Woodruff. Wor and p’s: Sketches
for lp-sampling without replacement. Advances in Neural Information
Processing Systems, 33:21092–21104, 2020.

[22] Michael B Cohen and Richard Peng. Lp row sampling by lewis weights.
In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 183–192, 2015.

[23] Graham Cormode and S. Muthukrishnan. An Improved Data Stream
Summary: The Count-Min Sketch and Its Applications. J. Algorithms,
2005.

[24] Graham Cormode and Shan Muthukrishnan. An improved data stream
summary: the count-min sketch and its applications. Journal of Algo-
rithms, 55(1):58–75, 2005.

[25] Alessandro Cornacchia, German Sviridov, Paolo Giaccone, and Andrea
Bianco. A traffic-aware perspective on network disaggregated sketches.
In 2021 19th Mediterranean Communication and Computer Networking
Conference (MedComNet), pages 1–4. IEEE, 2021.

[26] Christina Delimitrou, Sriram Sankar, Aman Kansal, and Christos
Kozyrakis. Echo: Recreating network traffic maps for datacenters with
tens of thousands of servers. In 2012 IEEE International Symposium on
Workload Characterization (IISWC), pages 14–24. IEEE, 2012.

[27] Fenghao Dong, Yang He, Yutong Liang, Zirui Liu, Yuhan Wu, Peiqing
Chen, and Tong Yang. Simisketch: Efficiently estimating similarity of
streaming multisets. arXiv preprint arXiv:2405.19711, 2024.

[28] Cristian Estan and George Varghese. New directions in traffic mea-
surement and accounting. In Proceedings of the 2002 conference on
Applications, technologies, architectures, and protocols for computer
communications, pages 323–336, 2002.

[29] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzen-
macher. Cuckoo filter: Practically better than bloom. In Proceedings
of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies, pages 75–88, 2014.

[30] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. Rdma over ethernet for
distributed training at meta scale. In Proceedings of the ACM SIGCOMM
2024 Conference, pages 57–70, 2024.

[31] Sumit Ganguly. Counting distinct items over update streams. Theoretical
Computer Science, 378(3):211–222, 2007.

[32] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google
file system. In Proc. of ACM SOSP, 2003.

[33] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. Drill: Micro load balancing for low-latency data
center networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 225–238, 2017.

[34] Liyuan Gu, Ye Tian, Wei Chen, Zhongxiang Wei, Cenman Wang, and
Xinming Zhang. Per-flow network measurement with distributed sketch.
IEEE/ACM Transactions on Networking, 2023.

[35] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. Sonata: Query-driven streaming network
telemetry. In Proc. of ACM SIGCOMM, 2018.

[36] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford. Network-
wide heavy hitter detection with commodity switches. In Proceedings
of the Symposium on SDN Research, pages 1–7, 2018.

[37] Nicholas JA Harvey, Jelani Nelson, and Krzysztof Onak. Sketching and
streaming entropy via approximation theory. In 2008 49th Annual IEEE
Symposium on Foundations of Computer Science, pages 489–498. IEEE,
2008.

[38] Yongchao He, Wenfei Wu, Xuemin Wen, Haifeng Li, and Yongqiang
Yang. Scalable on-switch rate limiters for the cloud. In IEEE INFOCOM
2021-IEEE Conference on Computer Communications, pages 1–10.
IEEE, 2021.

[39] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao
Chen, and Gong Zhang. Sketchvisor: Robust network measurement for
software packet processing. In Proc. of ACM SIGCOMM, 2017.

[40] Qun Huang, Patrick PC Lee, and Yungang Bao. Sketchlearn: Relieving
user burdens in approximatemeasurement with automated statistical
inference. In Proc. of ACM SIGCOMM, 2018.

[41] Qun Huang, Siyuan Sheng, Xiang Chen, Yungang Bao, Rui Zhang,
Yanwei Xu, and Gong Zhang. Toward nearly-zero-error sketching via
compressive sensing. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 1027–1044, 2021.

[42] Piotr Indyk and Milan Ruzic. Near-optimal sparse recovery in the
l1 norm. In 2008 49th Annual IEEE Symposium on Foundations of
Computer Science, pages 199–207. IEEE, 2008.

[43] Naga Katta, Aditi Ghag, Mukesh Hira, Isaac Keslassy, Aran Bergman,
Changhoon Kim, and Jennifer Rexford. Clove: Congestion-aware load
balancing at the virtual edge. In Proceedings of the 13th International
Conference on emerging Networking EXperiments and Technologies,
pages 323–335, 2017.

[44] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. Hula: Scalable load balancing using programmable
data planes. In Proceedings of the Symposium on SDN Research, pages
1–12, 2016.

[45] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. ATP: In-network aggregation for
multi-tenant learning. In 18th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 21), pages 741–761. USENIX
Association, April 2021.

[46] Kasper Green Larsen, Rasmus Pagh, and Jakub Tětek. Countsketches,
feature hashing and the median of three. In International Conference
on Machine Learning, pages 6011–6020. PMLR, 2021.

[47] Alberto Lerner, Rana Hussein, Philippe Cudré-Mauroux, and U eXascale
Infolab. The case for network accelerated query processing. In CIDR,
2019.

[48] Fuliang Li, Kejun Guo, Jiaxing Shen, and Xingwei Wang. Effective
network-wide traffic measurement: A lightweight distributed sketch
deployment. In IEEE INFOCOM 2024 - IEEE Conference on Computer
Communications, 2024.

[49] Minghao Li, Ran Ben Basat, Shay Vargaftik, ChonLam Lao, Kevin
Xu, Xinran Tang, Michael Mitzenmacher, and Minlan Yu. THC:
Accelerating Distributed Deep Learning Using Tensor Homomorphic
Compression. In USENIX Symposium on Networked Systems Design
and Implementation, 2024.

[50] Yuliang Li, Rui Miao, Mohammad Alizadeh, and Minlan Yu. {DETER}:
Deterministic {TCP} replay for performance diagnosis. In 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), pages 437–452, 2019.

[51] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng,
Lingbo Tang, Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Al-
izadeh, et al. Hpcc: High precision congestion control. In Proceedings of
the ACM Special Interest Group on Data Communication, pages 44–58,
2019.

[52] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. Distcache: Provable load
balancing for large-scale storage systems with distributed caching. In
Proc. of USENIX FAST, 2019.

[53] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. One sketch to rule them all: Rethinking network
flow monitoring with univmon. In Proc. of ACM SIGCOMM, 2016.

[54] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee,
Changhoon Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas
Sekar. Jaqen: A high-performance switch-native approach for detecting
and mitigating volumetric ddos attacks with programmable switches. In
30th USENIX Security Symposium (USENIX Security 21), pages 3829–
3846, 2021.

[55] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. Silkroad: Making stateful layer-4 load balancing fast and cheap
using switching asics. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, pages 15–28, 2017.

[56] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. Fast
in-network gray failure detection for isps. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 677–692, 2022.

[57] Andrea Monterubbiano, Jonatan Langlet, Stefan Walzer, Gianni Antichi,
Pedro Reviriego, and Salvatore Pontarelli. Lightweight acquisition
and ranging of flows in the data plane. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 7(3):1–24, 2023.

[58] Barefoot Networks. Barefoot Tofino. https://barefootnetworks.com/
products/brief-tofino/.

[59] NVIDIA. NVIDIA DeepStream. https://docs.nvidia.com/metropolis/
deepstream/dev-guide/text/DS Overview.html.

[60] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong
Qiao, Zhiguo Li, Kun Liu, Jie Lu, Jianyuan Lu, et al. Sailfish: Accelerat-
ing cloud-scale multi-tenant multi-service gateways with programmable
switches. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference,
pages 194–206, 2021.

[61] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C
Snoeren. Inside the social network’s (datacenter) network. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 123–137, 2015.

[62] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan RK
Ports, and Peter Richtárik. Scaling distributed machine learning with
in-network aggregation. arXiv preprint arXiv:1903.06701, 2019.

[63] Brandon Schlinker, Italo Cunha, Yi-Ching Chiu, Srikanth Sundaresan,
and Ethan Katz-Bassett. Internet performance from facebook’s edge. In
Proceedings of the Internet Measurement Conference, pages 179–194,
2019.

[64] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S. Muthukrishnan, and Jennifer Rexford. Heavy-hitter detection entirely
in the data plane. In Proc. of ACM SOSR, 2017.

[65] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. Chee-
tah: Accelerating database queries with switch pruning. In Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, pages 2407–2422, 2020.

[66] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. Let it flow: Resilient asymmetric load balancing with flowlet
switching. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 407–420, 2017.

[67] Qing Wang, Youyou Lu, and Jiwu Shu. Sherman: A write-optimized
distributed b+tree index on disaggregated memory. In Proceedings of
the 2022 International Conference on Management of Data, New York,
NY, USA, 2022. Association for Computing Machinery.

[68] Theophilus Wellem, Yu-Kuen Lai, Chao-Yuan Huang, and Wen-Yaw
Chung. A flexible sketch-based network traffic monitoring infrastructure.
IEEE Access, 7:92476–92498, 2019.

[69] Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang, Hongyi Liu,
and Ang Chen. Bedrock: Programmable network support for secure
rdma systems. In 31st USENIX Security Symposium (USENIX Security
22), pages 2585–2600, 2022.

[70] Jiarong Xing, Wenqing Wu, and Ang Chen. Ripple: A programmable,
decentralized link-flooding defense against adaptive adversaries. In 30th
USENIX Security Symposium (USENIX Security 21), pages 3865–3881,
2021.

[71] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. Elastic sketch: Adaptive and
fast network-wide measurements. In Proc. of ACM SIGCOMM, 2018.

[72] Minlan Yu, Lavanya Jose, and Rui Miao. Software defined traffic
measurement with opensketch. In Proc. of USENIX NSDI, 2013.

[73] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In USENIX Workshop on Hot Cloud (HotCloud), 2010.

[74] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu,
Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, et al. Lightguardian:
A full-visibility, lightweight, in-band telemetry system using sketchlets.
In 18th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 21), pages 991–1010, 2021.

